京公网安备 11010802034615号
经营许可证编号:京B2-20210330
因子模型举例:主成分分析
我之前提到的因子风险主要包括经济的(知利率)、基本面的(如账面市值比率)和技术的(如前期收益率)。获得一个包含大童股票的投资组合因子风险的历史数据,并用于对因子模型进行回测,对于独立交易员来说是非常昂贵且不切实际的。不过,有一种因子模型,其构建只依核于历史收益率。这个方法叫做主成分分析(PCA)。
用主成分分析构建因子风险和因子收益率,必须假设因子风险在估计的时间段内是不变的(时间独立)。(这排除了表示均值回归或惯性的因子,因为这些因子风险都与前期收益率有关)。更重要的是,如果假设因子收益率之间“不相关”,协方差矩阵bbT就是对角矩阵。如果用协方差矩阵RRT的特征向量作为APT方程R=Xb+u中矩阵X的列向量,可知bbT的确是对角矩阵,并且矩阵RRT的特征值正好扰是因子收益率b的方差。但是,如果因子数量与股票数量相等,我们就不需要使用因子分析了,因为只要选取几个具有较大特征位的特征向黄就能构成矩阵X。特征向量的个数是一个需要优化的交易模型参数。

下面的MATLAB程序展示了一个对S&P60。小盘股使用主成分分析的可能交易策略。这一策略仅设因于收益率具有惯性,即从本期到下期。因于收益率的值保持不变。因此,可以买入基于这些因子的期望收益率最高的股票,卖出期望收益率最低的股票。如果发现这一策略的平均收益率为负,表明对收益率具有惯性的假设是不合适的,或者策略的特有收益率太大了以至于策略失效。
clear;
%使用回望交易日作为佑计区间(训练集),以此来决定因子风险
%回望期交易日为252天,因子5个
%交易策略为:购买下一个交易日期望收益率最高的50只股票topN = 50;
%选用SP600小盘股做测试(此MATLAB二进制辑入丈件包含交易日,股票,开盘价,最高价,最低价,收盘价)
load('IJR 20080114');
mycls=fillMissingData(cl);
positionsTable=zeros (size(cl));
写dailyret的行是在不同时间段上的观察值
dailyret=(mycls一lagl(mycls))/lagl(mycls);
for t=lookback+1:length(tday)
% R的列是不同的观刻对象
R=dailyret(t-lookback+一:t.:)’;
%不考虑所有收益率缺失的股票
hasData=find(all(isfinite(R),2));
R=R(hasData,:);
avgR=smartmean(R,2);
%移去均值
R=R-repmat(avgR,[1 size(R,2)]);
%计算不同股票收益率的协方差拒阵
covR= smartcov(R');
% X是因子风险矩阵,B是因子收益率的方差
%用covR的特征值作为X的列向量
[X,B]=eig(covR);
%保留的因子数为numFactors
X(:,1:size(X,2)-numFactors) =[];
% b是从时间t-1到t的因子收益率
results=ols(R(:,end),X);b= results.beta;
% Rexp是假设因子收益率保持常数时。下一个时间段的期望收益率
Rexp=avgR+X*b;
[foo idxSort]=sort(Rexp,'ascend');
%做空期望收益率最低的50只股票
positionsTable(t,hasData(idxSort(1:topN)))=-1;
%做多期望收益率最高的50只股票
positionsTable(t,. ..
hasData(idxSort(end-opN+1:end)))=1;
end
%计算交易策略的每日收益率
ret=...
smartsum(backshift(1,positionsTable).*dailyret,2);
%计算交易策略的年化收益率
avgret=smartmean(ret)*252%收益率很低
%avgret=
%
%-1.8099
程序中使用了smartcov函数来计算多只股票日收益平向量的协方差矩阵。与MATLAB内置的cov函数不同,smartcov函数忽略了收益率缺失的交易日(包括NaN值)。
function y=smartcov(x)
% n个有限元素的协方差
% 行为观测值,列为变量
% 用N标准化,而非N-1
y= NaN (size(x,2) , size(x, 2 ));
xc= NaN(size(x));
goodstk=find(~all(isnan(x),1));
xc(:,goodstk)=...
x(:,goodstk)-repmat(smartmean(x(:,goodstk),1),...
[size(x,1)1];%移去均值
for m=1:length(goodstk)
for n=m:length(goodstk)
y(goodstk(m),goodstk(n))=...
smartmean(xc(:,goodstk(m)).
*..xc(:,goodstk(n)));
y(goodstk(n),goodstk(m))=y(goodstk(m) ,goodstk(n));
end
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20