京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据泄露事件警示:需注意数据损坏和面临更大风险的可能性
如今,在新闻报道中从来不缺乏让人充满数据恐慌的故事。Facebook公司也正在引领这种潮流,由于该公司将个人信息提交给分析引擎剑桥分析导致数据泄露,而遭遇组织和用户的强烈的指责和批评。而雅虎公司最近公布的一份报告称,2013年其全部30亿用户的数据受到网络攻击而对外泄露,使其成为有史以来最大的数据泄露事件。
尽管这些故事不可避免地引起了人们的愤慨和警惕,但大多数人都认为,下一次重大违规事件是不可避免的,而受到影响的人数只会增加。虽然欧盟发布实施的《通用数据保护条例》(GDPR)将有助于减少人们的一些担忧,但对于大数据应用以及私有公司对个人数据的商业使用有着更加强烈的安全意识。
当然,数据安全性很糟糕,并且还有很长的路要走。而数据是当今创新的核心,这将在消费电子产品和临床医学等现代生活的各个领域都取得重大进展。即使人们不知道,它也会让人们的生活变得更好——为客户提供改进的服务、有针对性的消费者交易和复杂的忠诚度计划。
那么,人们如何才能最好地利用数据的好处并减轻不良影响?要做到这一点并非易事。
数据中心是组织业务的核心。人们可能会认为IT部门不像以前那样是创新和业务领导力的家园,但是大数据革命只能从专门构建的高效数据中心高效地提供。正确实施数据中心战略意味着企业拥有一个智能且可扩展的资产,能够更好地成长。但是如果没有正确实施,组织业务都将面临风险。而数据中心是大数据成功的基石。
据IBM公司称,目前全球90%的数据都是在过去两年中创建的。这些数据无处不在:传感器用于收集购物者信息,发布到社交媒体网站的帖子、数字、图片、视频、交易记录,以及手机GPS信号等。
而大数据应用的关键特征之一是它们需要实时或接近实时的响应。而这意味着任何组织的安全、服务器、存储和网络都承受着巨大的压力,而这些需求的影响在整个技术供应链中都会被感受到。IT部门需要部署更具前瞻性的容量管理功能,以便主动满足处理、存储和分析机器生成数据的需求。
关于数据中心构建与租赁的最终说法
对于即使是规模最大的组织来说,拥有和维护全资拥有的数据中心的成本也会非常高,因此在长期的构建与购买租赁的争论中,购买租赁这一做法占据上风。组织外包给第三方可以提供最好的保护,防止数据中心复杂性、成本和风险的增加,并且无需担心正常运行时间。运营商中立性连接意味着数据中心环境中的用户可以选择最适合其需求的运营商服务提供商,租赁数据中心设施为组织提供了大幅降低的前期成本。此外,数据中心提供商可以无缝地让组织的资源进行扩展,可以快速轻松地处理不断增长的存储需求。
高性能计算(HPC)曾经被看作是大型和超大型组织的技术储备,现在正被视为解决大数据所带来挑战的有效方式。高密度创新策略还可以最大限度地提高生产力和效率,增加数据中心的可用功率密度和计算能力。
对于很多人来说,采用云计算是那些希望采用高性能计算(HPC)用户的梦想。云计算可以提供几乎无限的存储空间和即时可用且可扩展的计算资源,这非常诱人,为企业用户提供非常现实的机会,可以租用他们无法承担的基础设施,并使他们能够运行大数据查询,从而对其组织的日常战略和盈利能力产生巨大的积极影响。
面临巨大的安全挑战
也许最重要的是,当谈到数据中心战略时,购买和租赁选项解决了组织担心的可靠性和安全问题,而这是涉及到公众对数据信任的最大问题。但对于很多人来说,这些担忧意味着大规模迁移到标准云(其安全性可能不那么先进)不是一种很好的选择。相反,精明的组织正在迅速认识到,在共享环境中部署混合云策略意味着IT可以更轻松地扩展和增长,而不会影响安全性或性能。
另外,托管数据中心或托管服务可以帮助组织处理灾难恢复需求,这得到越来越多的组织认识和接受,无论其数据驻留在何处,迟早都会受到影响,因此重要的是知道如何解决不可避免的问题,而不是试图解决无法解决的问题。当组织从专家那里购买服务时,他们的职责就是让组织的业务快速地重新运转。
通过选择托管服务,组织可以有效地实现两全其美的选择,而可以购买和租赁不间断电源、电网供应、备用发电机、空调冷却、全天候安全、弹性路径多光纤连接,也可以直接采用公共云平台以提供全套IT基础设施——所有这些都是组织构建和运营自身成本的一小部分。
所以,数据并不是恶魔,但人们需要注意数据损坏和面临更大风险的可能性,以及重大利益。适当的基础设施和良好的数据管理只能帮助控制不良情况并使产品更好。
从根本上说,大数据的成功始于数据中心。如果实施的不正确,即使是最具创新性的应用程序也会失败。虽然人们将继续看到大数据泄露事件层出不穷,而明智的公司只会关注数据中心的内容,而不是媒体关注的焦点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22