
Python 爬取北京二手房数据,分析北漂族买得起房吗? | 附完整源码
房价高是北漂们一直关心的话题,本文就对北京的二手房数据进行了分析。
本文主要分为两部分:Python爬取赶集网北京二手房数据,R对爬取的二手房房价做线性回归分析,适合刚刚接触Python&R的同学们学习参考。
Python爬取赶集网北京二手房数据
入门爬虫一个月,所以对每一个网站都使用了Xpath、Beautiful Soup、正则三种方法分别爬取,用于练习巩固。数据来源如下:
Xpath爬取:
这里主要解决运用Xpath如何判断某些元素是否存在的问题,比如如果房屋没有装修信息,不加上判断,某些元素不存在就会导致爬取中断。
importrequests
fromlxmlimportetree
fromrequests.exceptionsimportRequestException
importmultiprocessing
importtime
headers={
'User-Agent':'Mozilla/5.0(WindowsNT10.0;WOW64)AppleWebKit/537.36(KHTML,likeGecko)Chrome/55.0.2883.87Safari/537.36'}
defget_one_page(url):
try:
response=requests.get(url,headers=headers)
ifresponse.status_code==200:
returnresponse.text
returnNone
exceptRequestException:
returnNone
defparse_one_page(content):
selector=etree.HTML(content)
ALL=selector.xpath('//*[@id="f_mew_list"]/div[6]/div[1]/div[3]/div[1]/div')
fordivinALL:
yield{
'Name':div.xpath('dl/dd[1]/a/text()')[0],
'Type':div.xpath('dl/dd[2]/span[1]/text()')[0],
'Area':div.xpath('dl/dd[2]/span[3]/text()')[0],
'Towards':div.xpath('dl/dd[2]/span[5]/text()')[0],
'Floor':div.xpath('dl/dd[2]/span[7]/text()')[0].strip().replace('\n',""),
'Decorate':div.xpath('dl/dd[2]/span[9]/text()')[0],
#地址需要特殊处理一下
'Address':div.xpath('dl/dd[3]//text()')[1]+div.xpath('dl/dd[3]//text()')[3].replace('\n','')+div.xpath('dl/dd[3]//text()')[4].strip(),
'TotalPrice':div.xpath('dl/dd[5]/div[1]/span[1]/text()')[0]+div.xpath('dl/dd[5]/div[1]/span[2]/text()')[0],
'Price':div.xpath('dl/dd[5]/div[2]/text()')[0]
}
ifdiv['Name','Type','Area','Towards','Floor','Decorate','Address','TotalPrice','Price']==None:##这里加上判断,如果其中一个元素为空,则输出None
returnNone
exceptException:
defmain():
foriinrange(1,500):#这里设置爬取500页数据,在数据范围内,大家可以自设置爬取的量
url='http://bj.ganji.com/fang5/o{}/'.format(i)
content=get_one_page(url)
print('第{}页抓取完毕'.format(i))
fordivinparse_one_page(content):
print(div)
if__name__=='__main__':
main()
Beautiful Soup爬取:
importre
frombs4importBeautifulSoup
importcsv
headers={'User-Agent':'Mozilla/5.0(WindowsNT10.0;WOW64)AppleWebKit/537.36(KHTML,likeGecko)Chrome/55.0.2883.87Safari/537.36'}
response=requests.get(url,headers=headers)
soup=BeautifulSoup(content,'html.parser')
items=soup.find('div',class_=re.compile('js-tips-list'))
fordivinitems.find_all('div',class_=re.compile('ershoufang-list')):
'Name':div.find('a',class_=re.compile('js-title')).text,
'Type':div.find('dd',class_=re.compile('size')).contents[1].text,#tag的.contents属性可以将tag的子节点以列表的方式输出
'Area':div.find('dd',class_=re.compile('size')).contents[5].text,
'Towards':div.find('dd',class_=re.compile('size')).contents[9].text,
'Floor':div.find('dd',class_=re.compile('size')).contents[13].text.replace('\n',''),
'Decorate':div.find('dd',class_=re.compile('size')).contents[17].text,
'Address':div.find('span',class_=re.compile('area')).text.strip().replace('','').replace('\n',''),
'TotalPrice':div.find('span',class_=re.compile('js-price')).text+div.find('span',class_=re.compile('yue')).text,
'Price':div.find('div',class_=re.compile('time')).text
#有一些二手房信息缺少部分信息,如:缺少装修信息,或者缺少楼层信息,这时候需要加个判断,不然爬取就会中断。
ifdiv['Name','Type','Area','Towards','Floor','Decorate','Address','TotalPrice','Price']==None:
foriinrange(1,50):
withopen('Data.csv','a',newline='')asf:#Data.csv文件存储的路径,如果默认路径就直接写文件名即可。
fieldnames=['Name','Type','Area','Towards','Floor','Decorate','Address','TotalPrice','Price']
writer=csv.DictWriter(f,fieldnames=fieldnames)
writer.writeheader()
foriteminparse_one_page(content):
writer.writerow(item)
time.sleep(3)#设置爬取频率,一开始我就是爬取的太猛,导致网页需要验证。
if__name__=='__main__':
正则爬取:我研究了好久,还是没有解决。
这一过程中容易遇见的问题有:
有一些房屋缺少部分信息,如缺少装修信息,这个时候需要加一个判断,如果不加判断,爬取就会自动终止(我在这里跌了很大的坑)。
Data.csv知识点存储文件路径默认是工作目录,关于Python中如何查看工作目录:
importos
#查看pyhton的默认工作目录
print(os.getcwd())
#修改时工作目录
os.chdir('e:\\workpython')
#输出工作目录
e:\workpython
爬虫打印的是字典形式,每个房屋信息都是一个字典,由于Python中excel相关库是知识盲点,所以爬虫的时候将字典循环直接写入了CSV。
Pycharm中打印如下:
将字典循环直接写入CSV效果如下:
很多初学者对于Address不知如何处理,这里强调一下Beautiful Soup 中.contents的用法,亲身体会,我在这里花了好多时间才找到答案。
R对爬取的二手房房价做一般线性回归分析
下面我们用R对抓取的赶集网北京二手房数据做一些简单的分析。
数据的说明
Name:主要是商家的醒目标题,不具备分析参考意义
Type:卧室数、客厅数、卫生间数
Area:面积(平方米)
Towards:朝向
Floor:楼层
Decorate:装修情况,如精装修、简单装修、毛坯房
Address:二手房的地址
TotalPrice:总价
Price:均价(元/平方米)
data<-read.csv("E://DataForR/RData/data.csv")
DATA<-data[,-c(1,7)]#将Name和Address两列去掉
DATA[sample(1:nrow(DATA),size=10),]
#在爬取的时候加入了判断,所以不知道爬取的数据中是否存在缺失值,这里检查一下
colSums(is.na(DATA))
#这里将Type的卧室客厅和卫生间分为三个不同的列
##这里需要注意,有一些房屋没有客厅如:1室1卫这时候需要单独处理,还有一些没有厕所信息。
library(tidyr)
library(stringr)
DATA=separate(data=DATA,col=Type,into=c("Bedrooms","Halls"),sep="室")
DATA=separate(data=DATA,col=Halls,into=c("Halls","Toilet"),sep="厅")
##将卫生间后面的汉字去掉
DATA$Toilet<-str_replace(DATA$Toilet,"卫","")
###如图六,将Halls中带有汉字去掉,因为有一些房屋信息没有客厅,如:1室1厅,在分成卧室和客厅时,会将卫生间分到客厅一列。
DATA$Halls<-str_replace(DATA$Halls,"卫","")
##取出没有客厅信息的数据,这些数据被separate到Halls列
newdata<-DATA[which(DATA$Toilet%in%NA),2]
newdata
##将没有客厅的房屋信息Halls列填充为0
DATA[which(DATA$Toilet%in%NA),2]<-0
DATA[which(DATA$Toilet%in%NA),3]<-newdata
colSums(DATA=="")
BedroomsHallsToiletAreaTowardsFloorDecorate
0020000
TotalPricePrice
00
##发现有2个厕所没有信息,将其填写为0。
DATA$Toilet[DATA$Toilet==""]<-0
##这里将Area后的㎡去掉
DATA$Area<-str_replace(DATA$Area,"㎡","")
##查看Towards的类型
table(DATA$Towards)
Towards北向东北向东南向东西向东向南北向南向西北向
512523506532190167838
西南向西向
2826
##将Floor信息带括号的全部去除
DATA$Floor<-str_replace(DATA$Floor,"[(].*[)]","")##正则表达式
#查看Floor的类别信息
低层地下高层共1层共2层共3层共4层共5层中层
632327903661101681301016
#分别将TotalPrice和Price后面的万元、元/㎡去掉
DATA$TotalPrice<-str_replace(DATA$TotalPrice,"万元","")
DATA$Price<-str_replace(DATA$Price,"元/㎡","")
head(DATA)
##将数据转换格式
DATA$Bedrooms<-as.factor(DATA$Bedrooms)
DATA$Halls<-as.factor(DATA$Halls)
DATA$Toilet<-as.factor(DATA$Toilet)
DATA$Area<-as.numeric(DATA$Area)
DATA$TotalPrice<-as.numeric(DATA$TotalPrice)
DATA$Price<-as.numeric(DATA$Price)
DATA$Towards<-as.factor(DATA$Towards)
DATA$Decorate<-as.factor(DATA$Decorate)
str(DATA)
以上数据清洗完毕。
描述性分析
这部分的主要思路是探究单个自变量对因变量的影响,对房价的影响因素进行模拟探究之前,首先对各变量进行描述性分析,以初步判断房价的影响因素。这里探究各个因素对总价影响。
探究Bedrooms与TotalPrice的关系
table(DATA$Bedrooms)
12345679
54112257791931022051
##由于拥有6、7、9个卧室数的数量较少,这里我们排出这些数据。
DATA<-DATA[-(which(DATA$Bedrooms%in%"6")),]
12345
5411225779193102
library(ggplot2)
ggplot(DATA,aes(x=Bedrooms,y=TotalPrice))+geom_boxplot(col="red")
DATA$Bedrooms<-as.numeric(DATA$Bedrooms)
##这里将卧室数为1、2、3命名为A,4为B,5为C
DATA$Bedrooms[DATA$Bedrooms=='1']<-"A"
DATA$Bedrooms[DATA$Bedrooms=='2']<-"A"
DATA$Bedrooms[DATA$Bedrooms=='3']<-"A"
DATA$Bedrooms[DATA$Bedrooms=='4']<-"B"
DATA$Bedrooms[DATA$Bedrooms=='5']<-"C"
不同卧室数,TotalPrice不同。且随着卧室数的增多,总价越高,符合大众的认知。
探究Halls与TotalPrice的关系
table(DATA$Halls)
0123459
2016741050771810
##5个客厅只有一个个体,我们这里将其排出
DATA<-DATA[-(which(DATA$Halls%in%"5")),]
table(DATA$Halls)
ggplot(DATA,aes(x=Halls,y=TotalPrice))+geom_boxplot(col="red")
客厅数为3时候总价最高,客厅数为0、1和2的时候总价低于客厅数3和客厅数4。
探究Toilet与TotalPrice的关系
#探究卫生间与总价的关系
table(DATA$Toilet)
012345679
221424701167426720
#这里将卫生间数为0、6和7的去掉
DATA<-DATA[-(which(DATA$Toilet%in%"0")),]
021424701167426000
ggplot(DATA,aes(x=Toilet,y=TotalPrice))+geom_boxplot(col="red")
一般卧室数越多,卫生间数也越多,即卫生间数越多,总价越高。
探究Area与TotalPrice的关系
ggplot(DATA,aes(x=Area,y=TotalPrice))+geom_point(col='red')
这个完全符合住房面积越大,总价越高。
探究Towards与TotalPrice的关系
ggplot(DATA,aes(x=Towards,y=TotalPrice))+geom_boxplot(col="red")
探究Floor与TotalPrice的关系
ggplot(DATA,aes(x=Floor,y=TotalPrice))+geom_boxplot(col="red")
图中信息显示楼层一共只有1、2、3、地下的总价较高。
探究Decorate与TotalPrice的关系
ggplot(DATA,aes(x=Decorate,y=TotalPrice))+geom_boxplot(col="red")
不同装修信息对总价影响较小。
模型建立
fit<-lm(TotalPrice~Bedrooms+Halls+Toilet+Area+Towards+Floor+Decorate,data=DATA)
summary(fit)
Call:
lm(formula=TotalPrice~Bedrooms+Halls+Toilet+Area+
Towards+Floor+Decorate,data=DATA)
Residuals:
Min1QMedian3QMax
-1330.80-103.49-21.4163.882961.59
Coefficients:
EstimateStd.ErrortvaluePr(>|t|)
(Intercept)-112.763388.3010-1.2770.201697
Bedrooms2-43.593416.2533-2.6820.007359**
Bedrooms3-82.656520.7641-3.9817.04e-05***
Bedrooms4-63.309634.9521-1.8110.070198.
Bedrooms579.061854.07631.4620.143842
Halls1-5.066364.2764-0.0790.937182
Halls2-53.890565.4427-0.8230.410307
Halls3-303.975079.2280-3.8370.000127***
Halls4-528.5427104.0849-5.0784.07e-07***
Toilet2112.956619.11715.9093.87e-09***
Toilet3543.730438.805614.012<2e-16***
Toilet4735.189455.097713.343<2e-16***
Toilet5338.790684.28514.0205.98e-05***
Area5.10910.161931.557<2e-16***
Towards东北向138.908879.38171.7500.080248.
Towards东南向187.189568.53882.7310.006351**
Towards东西向176.305565.83842.6780.007453**
Towards东向210.943573.27442.8790.004022**
Towards南北向75.783157.11991.3270.184704
Towards南向60.194956.96781.0570.290763
Towards西北向75.432671.14151.0600.289091
Towards西南向169.810675.96262.2350.025467*
Towards西向234.081676.55853.0580.002253**
Floor地下-812.357863.3277-12.828<2e-16***
Floor高层12.352514.24660.8670.385991
Floor共1层-313.727852.1342-6.0182.00e-09***
Floor共2层-453.369241.6829-10.877<2e-16***
Floor共3层-601.703244.3336-13.572<2e-16***
Floor共4层-183.786636.3396-5.0574.52e-07***
Floor共5层-41.418425.7922-1.6060.108419
Floor中层-1.722313.5961-0.1270.899204
Decorate简单装修-63.159122.0584-2.8630.004224**
Decorate精装修-49.327619.8544-2.4840.013033*
Decorate毛坯-157.029924.3012-6.4621.22e-10***
---
Signif.codes:0‘***’0.001‘**’0.01‘*’0.05‘.’0.1‘’1
Residualstandarderror:265.5on2794degreesoffreedom
MultipleR-squared:0.6852,AdjustedR-squared:0.6815
F-statistic:184.3on33and2794DF,p-value:<2.2e-16
模型的F检验拒绝原假设,说明建立的模型是显著的;Ajusted R-squared为0.6815,模型的拟合程度尚可接受。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01