
我是R语言小白带你建模之adaboost建模
今天更新我用我蹩脚的R技能写的一个adaboost建模的过程,代码有参考别人的代码再根据自己的思路做了更改。代码一部分来自书籍《实用机器学习》,我个人特别喜欢这本书
至于adaboost,大家自动移步谷歌,我跟一个人说我喜欢百度,他误以为我喜欢百度一个公司,所以我决定改口说去谷歌,毕竟谷歌没广告。
先说,模型的数据是我实现已经缺失值填补,以及分组好的数据,所以代码中没有预处理的部分,只有一些简单变量的转化。
代码分为三部分:
1、加载包以及一个简单的变量形式转化,以及训练集和测试的分区,还有初步拟合一个简单的adaboost。
2、设置深度以及树的棵树,希望是,能通过输出的模型评估指标,找到一个复杂度低,但是模型效果相对较好的adaboost。
3、检查你取的最优的adaboost的模型的泛化能力,这里是通过把数据集变成十等份,用刚才拟合出来的adaboost模型计算其ks、auc、正确率啊,看时候会不会过拟合造成在其他数据集中的效果下降。
这可能是我这么久以来这么正经的写R代码,所以我的注释特别多,不像我的sas代码,基本不写注释。
1
rm(list=ls())
# 清空缓存数据
rpart.installed <- 'rpart' %in% rownames(installed.packages())
if (rpart.installed) {
print("the rpart package is already installed, let's load it...")
}else {
print("let's install the rpart package first...")
install.packages('rpart', dependencies=T)
}
#检查是否存在rpart包,若没有就加载
library('rpart')
partykit.installed <- 'partykit' %in% rownames(installed.packages())
if (partykit.installed) {
print("the partykit package is already installed, let's load it...")
}else {
print("let's install the partykit package first...")
install.packages('partykit', dependencies=T)
}
#检查是否存在partykit包,若没有就加载
library('grid')
library('partykit')
adabag.installed <- 'adabag' %in% rownames(installed.packages())
if (adabag.installed) {
print("the adabag package is already installed, let's load it...")
}else {
print("let's install the adabag package first...")
install.packages('adabag', dependencies=T)
}
library('adabag')
library('rpart')
library('gplots')
library('ROCR')
# 加载在代码中需要使用的包
x<-read.csv("alldata_zuhe.csv",header=T);
#读目标数据,读取数据之前,手动加载路径
D<-as.data.frame(x)
#把x数据转成数据框
D$APPL_STATUS_1<-as.factor(D$APPL_STATUS_1)
# 把目标变量转成因子格式,以防模型拟合的时候识别为连续变量建立回归树
# colnames(D)[ncol(D)] <- 'APPL_STATUS_1'
D<-D[-which(names(D) %in% c('APPL_ID'))]
# 剔除掉一些不用进入模型的变量
train_ratio <- 0.7
# 设置训练集以及测试集的比例,这里设置的是3:7
n_total <- nrow(D)
# 取出原样本数据集的数量
n_train <- round(train_ratio * n_total)
# 计算出训练集的数量
n_test <- n_total - n_train
# 计算出测试集的数量
set.seed(42)
# 设置抽取种子,种子的意义在于当取同个种子的时候,抽取的样本一样。
list_train <- sample(n_total, n_train)
# 利用sample函数取数测试集的样本的行数
D_train <- D[list_train,]
# 从原样本中取出训练数据
D_test <- D[-list_train,]
# 从原样本中取出测试集数据
y_train <- D_train$APPL_STATUS_1
# 取数训练集中的因变量,待会对模型的评估需要用到
y_test <- D_test$APPL_STATUS_1
# 取数测试集中的因变量,待会对模型的评估需要用到
maxdepth <- 3
# 设置树的深度,利用rpart.control带着深度的向量,也可以直接写上深度,
# 设置在提升树过程中的树的深度
mfinal <- 10
# 设置树的数量
M_AdaBoost1 <- boosting(APPL_STATUS_1~., data = D_train,
boos = FALSE, mfinal = mfinal, coeflearn = 'Breiman',
control=rpart.control(maxdepth=maxdepth))
summary(M_AdaBoost1)
# 输出对象的M_AdaBoost1的信息,大概是种了几棵树,几个客户预测错了之类的。
M_AdaBoost1$trees
# 看下你种下的十棵树的大致情况。
M_AdaBoost1$trees[[1]]
# 检查第一颗树的情况,你检查也是看他合不合理,尽管不合理,只要效果好,
# 你还是会用,毕竟又不是只有一棵树。
M_AdaBoost1$weights
# 检查每棵树的权重
M_AdaBoost1$importance
# 看下变量的重要性。可以利用这个方法去筛选变量。
errorevol(M_AdaBoost1, D_test)
# 看下误差的演变
y_test_pred_AdaBoost1 <- predict(M_AdaBoost1, D_test)
# 使用模型预测测试集的效果。这里输出有概率也有预测分类,
# y_test_pred_AdaBoost1是个list的对象,跟拒想算的模型评估量选择计算。
accuracy_test_AdaBoost1 <- sum(y_test==y_test_pred_AdaBoost1$class) / n_test
# 计算正确率,即使用预测客户状态
msg <- paste0('accuracy_test_AdaBoost1 = ', accuracy_test_AdaBoost1)
print(msg)
# 输出正确率的结果
y_train_pred_AdaBoost1 <- predict(M_AdaBoost1, D_train)
# 使用模型预测训练集的效果
accuracy_train_AdaBoost1 <- sum(y_train==y_train_pred_AdaBoost1$class) / n_train
msg <- paste0('accuracy_train_AdaBoost1 = ', accuracy_train_AdaBoost1)
print(msg)
# 计算正确率之后,输出正确率的结果。
2
# 这个代码是为了寻找最优的种树的数目以及深度,因为了防止过拟合以及节省时间,这里的深度我建议设置的是2:5
# 树的数目大概是10-50课,数可能多了,但是模型复杂度也提升了,泛化能力就低了。
library(plyr)
# 加载需要的包
total1<-data.frame()
# 建立一个空表,待会这个表是用来装结果的
m <- seq(5, 30, by = 5)
# 设置树的数量,我这里设置的是从5棵树开始,到30棵树,以5为单位。
for (j in m) {
# 循环树的数量
for(i in 3:6){
# 这里设置深度循环的数字,我设置的3到6
maxdepth <- i
mfinal <- j
M_AdaBoost1 <- boosting(APPL_STATUS_1~., data = D_train,boos = FALSE, mfinal = mfinal, coeflearn = 'Breiman',control=rpart.control(maxdepth=maxdepth))
# 设置参数之后生成模型
y_test_pred_AdaBoost1 <- predict(M_AdaBoost1, D_test)
# 利用生成的模型预测测试集
accuracy_test <- sum(D_test$APPL_STATUS_1==y_test_pred_AdaBoost1$class) / length(y_test_pred_AdaBoost1$class)
# 计算正确率
pred<-prediction(y_test_pred_AdaBoost1$prob[,2],y_test)
perf<-performance(pred,'tpr','fpr')
auc1 <-performance(pred,'auc')@y.values
#计算AUC值
v = as.vector(unlist(auc1[1]))
# 因为AUC值不是一个向量的格式,但是我后续需要组成数据框,所以在这里转成向量了
ks1 <- max(attr(perf,'y.values')[[1]]-attr(perf,'x.values')[[1]])
#计算KS
total<-data.frame(auc=v,ks=ks1,accuracy=accuracy_test,maxdepth=i,mfinal=j)
# 将多个模型评估指标合并变成数据框
total1<-rbind(total1,total)
# 纵向合并
print(paste("adaboost-maxdepth:", i))
print(paste("adaboost-mfinal:", j))
# 打印循环哪一步,以防报错的时候可以直达是哪一步错误,以及跟踪进度跑到那里了
}
}
结果跑出看total1这个数据集,图:
第一列是auc,依次是ks,正确率,设置的树的深度,以及种的棵树。可以根据这张表选出你认为好的深度以及树的棵树
3
M_AdaBoost1 <- boosting(APPL_STATUS_1~., data = D_train,
boos = FALSE, mfinal = 15, coeflearn = 'Breiman',
control=rpart.control(maxdepth=3))
# 在刚才的adaboost取最优参数取出最优的树以及深度之后,在这里跑出模型之后,用在其他模型上面
# 因为集成模型大部分时候都是一个类似黑箱子的过程,你是知道几棵树,深度多少,但是实际上,你并不能
# 像逻辑回归一样一颗一颗树去看他合不合理,所以这时候就需要就检查他对其他数据是不是也可行,且效果
# 不会下降太多
library(plyr)
# 加载需要的包
CVgroup <- function(k, datasize, seed) {
cvlist <- list()
set.seed(seed)
n <- rep(1:k, ceiling(datasize/k))[1:datasize]
#将数据分成K份,并生成的完整数据集n
temp <- sample(n, datasize)
#把n打乱
x <- 1:k
dataseq <- 1:datasize
cvlist <- lapply(x, function(x) dataseq[temp==x])
#dataseq中随机生成10个随机有序数据列
return(cvlist)
}
cvlist<-CVgroup(10, 10513, 957445)
# 这个过程第二个参数输入的是你的数据集的总数,第三个是seed种子,第一个是划分成几份。
# cvlist是一个list,包含十个样本,每个样本的数量差不多
data <- D
# 将的原样本数据集赋给data
total1 <- data.frame()
#建立一个空表存储预测结果
for (i in 1:10) {
# 循环上面那个代码分好的是个数据集
print(i)
test <- data[cvlist[[i]],]
# 取出第i个数据集
y_test<-test$APPL_STATUS_1
# 取出第i个数据集中的因变量
y_test_pred_rf1 <- predict(M_AdaBoost1, test)
# 预测第i个数据集
accuracy_test <- sum(test$APPL_STATUS_1==y_test_pred_rf1$class) / length(y_test_pred_rf1$class)
# 计算第i个数据集的正确率
pred<-prediction(y_test_pred_rf1$prob[,2],y_test)
perf<-performance(pred,'tpr','fpr')
auc1 <- performance(pred,'auc')@y.values
v = as.vector(unlist(auc1[1]))
#计算第i个数据集的AUC值
ks1 <- max(attr(perf,'y.values')[[1]]-attr(perf,'x.values')[[1]]) #计算KS
#计算第i个数据集的ks值
total<-data.frame(auc=v,ks=ks1,accuracy=accuracy_test)
# 合并各项参数
total1<-rbind(total1,total)
# 合并每个数据集的结果
}
这个代码跑完之后看total1,图:
这就是你选出的模型,将总体数据分成十份每一份的ks以及auc,你要是觉得不可靠,可以多循环几次种子。要是觉得你选的模型不好,可以回去第二步再选一个放到第三步的代码跑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29