花式玩逻辑回归之不是只能做二分类
最近忙了一些,懒也有啦,就没怎么看书,发现一些新的东西,所以更新慢了,之前有个朋友叫我写避免过拟合,但是这个题目真的好广泛,我还没看透,所以这个可能后续再写,今天我们来写个关于逻辑回归的话题。
其实大部分的时候,使用逻辑回归都是处理二分类的问题,那是因为在信用评分卡中,都是认好客户和坏客户,但是在其他的建模场景中还是存在多分类的情况的,例如你想建立一些用户标签,区分使用你在库客户的一些行为特征或者给他们加个标签,更好的建立模型,那么建模中的多分类的话,可能会用神经网络去区分多分类,但是除了神经网络,我们万能的逻辑回归也可以。
介绍两种把逻辑回归变成多分类算法的思路,绝对不是那个多分类的逻辑回归那个算法,底层还是那个二分类的逻辑回归。
1
哑变量式法
平时如果逻辑回归不转化woe的话,字符变量就是以哑变量的形式进入模型的,那么现在我们也可以把我们的多分类变成哑变量的形式建立多个模型。
步骤一:
假设现在是有4个分类,A-B-C-D,现在建立四个模型,这四个模型的Y值是这么设置的:
A 为Y值等于1 |
B C D 为Y值等于0 |
F1(X) |
B 为Y值等于1 |
A C D 为Y值等于0 |
F2(X) |
C 为Y值等于1 |
A B D 为Y值等于0 |
F3(X) |
D 为Y值等于1 |
A B C 为Y值等于0 |
F4(X) |
分别建立了四个模型,这里你可以用全部的数据分成四份,分别建立四个模型,但是如果你数据少的话,其实我觉得你用同个全样本数据做四个模型。
步骤二:这四个模型分别拟合建立模型,生成这四个模型的标准卡
步骤三:部署应用的就是,客户的全部维度跑四个模型,取预测概率最高的那个即为是哪一类,即max(p(f1(x)), p(f2(x)), p(f3(x)), p(f4(x)))。
2
投票式
还是例如是四个标签,A-B-C-D,这个方法的思路是:
步骤一:
取标签A,C的数据,分别为1,0 |
F1(X) |
取标签A,B的数据,分别为1,0 |
F2(X) |
取标签A,D的数据,分别为1,0 |
F3(X) |
取标签B,C的数据,分别为1,0 |
F4(X) |
取标签C,D的数据,分别为1,0 |
F5(X) |
取标签B,D的数据,分别为1,0 |
F6(X) |
这时候你需要建立是6个模型,每个模型选取的数据是样本中对应标签的数据。
步骤二:分别拟合建立6个模型,并生成6个模型的标准评分卡。
步骤三:部署应用是这样子的:
当一个客户进来的时候:跑第一个模型,预设一个阈值,如果超过阈值则为A,小于阈值就是C,依次算出6个模型的预测标签,预测标签就是这6个模型的最高票。
3
空间距离法
这个方法在西瓜书的65页有详细的介绍,如果你看不懂我写的,你可以去看一下西瓜书的65页-67页的内容。这个方法我是自己看了之后,按照自己的理解再加点一个改动。
这个方法有点麻烦哈,就是你建立多少个模型都可以。
步骤一:你的Y值中的1可以是A 也可以是AB 0是CD ,然后你随机的让一个或者几个标签作为y值中的1,剩下的一个标签作为y值的0,那么你就可以得到以下的矩阵。F1(X),就是A标签为目标标签,剩下则为非目标标签,以此类推
|
F1(X) |
F2(X) |
F3(X) |
F4(X) |
F5(X) |
F6(X) |
F7(X) |
A |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
B |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
C |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
D |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
步骤二:就是你根据的y值取目标标签为1,然后进行建模,分别建立7个模型。这个我建立的模型对D不太公平,正常的话应该是每个标签的做目标标签的次数应该是跟非目标的次数是一样的,但是这个没那么宽,我就列举了一下。
步骤三:部署的时候就是这样子,你的客户维度跑了全部的模型,模型会有一个阈值,那么大于这个阈值就是目标标签,小于阈值就是非目标标签。那么如果想F2(X)这种,大于阈值,那他可能是A标签也可能是B标签,这时候就不好判断了,所以这之后按照空间距离的公司,算出客户预测标签组成一个向量,与A B C D的各个模型的作为目标变量组成的向量,计算预测标签向量与标签向量之间的欧式距离,距离最小的,即预测标签为其标签,我举个例子:
例如有个客户数据是(1,0,0,0,1,0,1),那么他与A B C D欧式距离就是分别是:
那么这个客户的预测标签就是4。我这欧式距离是手算,要是有错的告诉我一下哈。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01