
统计学上的P值的含义通俗
首先解释下“有统计学意义”和“显著差异” 两个概念:
”有统计学意义"和"差异显著"是两个不同的概念,"差异显著"易给人一种误导,
原来两概念在统计学中经常有点通用,现在明确地只能用“有统计学意义”。
P<0.05是指假设H0(即两总体没区别)成立的可能性概率在5%以下,
a就是允许犯Ⅰ类错误(拒绝了正确的无效假设H0)的概率,
一般在做假设检验之前先定好,
如果a=0.05,表示允许犯Ⅰ类错误的概率为0.05,所以当P<0.05时,
说明在a=0.05允许的范围内,认为两总体是有差异的,
即两总体差异有统计学意义(指在a=0.05的统计学参数情况下);
如果此时P=0.04,而先设定a=0.01,则认为两总体差异无统计学意义
(指在a=0.01的统计学参数情况下),虽然两总体没变,两总体差异也没变;
所以 ”有统计学意义"并不等同于"差异显著" ,举个例子:两组数:
A组:3, 3.05, 3.01, 3.04, 2.95;
B组:3.2, 3.1, 3.15, 3.14, 3.12;
两组数差异(均数)并不大,但P<0.001,设定a=0.01或0.05,则认为两总体差异统计学意义。这主要与两组数的标准差有关。
如果写成两总体差异显著,易认为两组数(均数)差别大。
第一类错误与第二类错误 通俗解释:
H0:一个真心爱你的男生
H1:一个不是真心爱你的男生
如果H0实际上成立,而你凭经验拒绝了H0,也就是说,
你拒绝了一个你认为不爱你而实际上真心爱你的男生,那么你就犯了第Ⅰ类错误;
如果H0实际上不成立,而你接受了H0,同样的道理,
你接受了一个你感觉爱你而实际上并不爱你的男生,那么你就犯了第Ⅱ类错误。
如果要同时减小犯第Ⅰ类错误和第Ⅱ类错误的概率,那就只能增加恋爱的次数n,
比如一个经历过n=100次恋爱的女生,第101次恋爱犯第Ⅰ类错误和第Ⅱ类错误的概率就会小很多了。
统计学上把保守的、传统的观点作为原假设H0, 新颖的、感兴趣的、想去论证的观点作为备择假设H1
统计学P值与显著性水平之间的比较:
就好比一个犯罪嫌疑人 在没有确凿的证据前都只能以他无罪为原假设
因为一个人无罪判他有罪 比 有罪判无罪 的后果严重的多 大家都不愿被冤枉
所以推广开来 你想证明一班的成绩比二班好 原假设就设为一班二班成绩相同,
其中出现的个别成绩有差异,是由于抽样误差所造成的,纯在偶然性;
备择假设就设为一班比二班成绩好,其中样本中出现的一班二班成绩差异不是偶然出现的,
具有高度统计学意义,
因此, 一般把显著性水平设定为0.05,当P值小于0.05时, 我们认为因为偶然性而造成的成绩差异的概率比较小,
因此拒绝原假设,就可以接受一班成绩比二班好的事实;
若P值比0.05大就说明没有足够证据证明一班成绩比二班好,原假设中因为抽样误差而造成的成绩差异的可能性比较高,
保守起见拒绝备择假设 接受原假设。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29