
7个大数据流言,避免错误的Hadoop和云分析决策
Hadoop是由英雄们创造的开源传奇,然而传奇经常还伴随着一些流言——这些流言可能会导致IT高管们带着乐观的心态去制定策略。
数据体积和数据使用在以惊人的速度增长着,这一点从分析师的分析中不难获得——IDC今年在数据存储上的 增长速度将达到53.4%,AT&T声称 无线数据的流量在过去的5年内增长200倍,如果你着眼自己通信渠道的话,将毫无疑问的发现互联网内容、电子邮件、应用通知、社交消息以及每天自动接收的消息都在显著的增长。这也是为什么 从McKinsey到Facebook再到Walmart都重点聚焦于大数据。
就像我们看到的90年代与2000年代的互联网泡沫,大数据同样会导致一些公司做出糟糕的设想和决策。
Hadoop毫无疑问是公司为了解决大数据需求的主要投资领域之一,而类似Facebook这些在大体积数据处理上有所建树的公司都公开的吹捧过在Hadoop上取得的成功,同样初入大数据领域的公司也必先着眼这些成功的典型。Adam Bloom的一个MIT(麻省理工学院)计算机科学校友曾对他说:“when all you have is a hammer, everything looks like a nail。”通过Hadoop的炒作,我们可以避免 功能固着(functional fixedness)这种认知偏差。
Hadoop是一个多维的解决方案,可以通过不同的方式进行部署和使用。下面就看一下公司在开始Hadoop项目之前必须了解的一些关于Hadoop和大数据的预先构想的错误理念:
在体积之外,许多工业先锋还经常提到 variety(多样)、variability(可变)、velocity(速度)和value(价值)。撇开所有单词都押头韵,关键点在于大数据并不是体积上的增长——它正在向着实时分析、结构化和非结构化来源方向发展,并被用于尝试和制定更好的决策。
综上所述,不是只有分析大体积数据才会获得价值。举个例子,超时限的存储和分析1PB的数据的价值可能比不上实时分析1GB的数据。从工具集上考虑,你可能需要一个内存数据网络进行实时的分析,从新鲜的数据上获得价值,而不是去解剖过时的数据获得价值。
当Facebook、Twitter、Yahoo!在Hadoop上豪赌时,他们同样知道HDFS和MapReduce受限于处理类似SQL语言的能力,这也是最终得以孵化的原因。基于全球上大量的数据都是通过SQL来管理,一些公司和项目都在Hadoop和SQL的兼容上狠下功夫。
在IT投资组合里有很多一直长期存在的投资,而大型机就是这么一个例子,与ERP、CRM和SCM这些系统一样演变至今。而如果大型机不想被公司或者架构遗弃,它就必须展示在现有投资环境中的价值。而VMware的许多客户在使用大型机上都遇到了速度、规模和开销的问题,但是并不是没有途径去解决这些问题,比如像vFabric SQLFire这样的内存大数据网络就可以被嵌入或者使用分布式缓存途径去解决类似队列的高速摄取、促进大型机的批处理或实时分析报告这些问题。
Hadoop最初的设计只是在实体服务器上运行,然而随着越来越多机构的采用,许多公司都希望它能作为数据中心服务在云中运行。为什么这么多的公司都希望虚拟化Hadoop?
首先要考虑管理基础设施的扩展性,VMware快速的认识到扩展计算资源,比如虚拟Hadoop节点,当数据和计算分开时会对性能有所帮助,否则如果你关闭某个Hadoop节点将丢失上面的所有数据或者添加一个没有数据的空节点。而鉴于这个原因,许多来自MapR、Hortonworks、Cloudera和Greenplum的专业Hadoop发行版都支持Project Serengeti和Hadoop Virtualization Extensions(HVE)。
首先,存在SaaS云服务解决方案。许多云服务允许你云端运行Hadoop、SQL,这无疑可以帮助你省下数据中心建造投资的时间和金钱。对于一个公有云运行时,Java开发者可以从Spring Data for Hadoop以及一些其它的GitHub中的用例获益。
Hadoop通常解释在一堆商用服务器上运行,这样就会有人认为添加一个虚拟层在带来额外支出的同时并不会有额外的价值收益。用这个观点看是存在缺陷的,你并没有考虑到数据和数据分析事实上都是动态的。想成为一个利用Hadoop能量去成长、创新及创造效率的公司,你必须改变数据的来源、分析的速度等等。
虚拟化基础设施同样可以减少物理硬件的封装,让CAPEX直接等于纯粹的商用硬件,而通过自动以及更搞笑的利用共享基础设施同样可以减少OPEX(运营成本)。
Hadoop在本地磁盘上运行,对于中小型集群它同样可以在一个共享的SAN环境下运行良好。而高带宽比如10GB Ethernet、PoE以及iSCSI对性能同样有很好的支持。
总结
宣传亦或是炒作只能作为接受新事物的参考,在做决策之前必须进行深入的了解和分析。被流言所迷惑而做出错误的决策,必然会让投资陷入危险的境地。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08