
7个大数据流言,避免错误的Hadoop和云分析决策
Hadoop是由英雄们创造的开源传奇,然而传奇经常还伴随着一些流言——这些流言可能会导致IT高管们带着乐观的心态去制定策略。
数据体积和数据使用在以惊人的速度增长着,这一点从分析师的分析中不难获得——IDC今年在数据存储上的 增长速度将达到53.4%,AT&T声称 无线数据的流量在过去的5年内增长200倍,如果你着眼自己通信渠道的话,将毫无疑问的发现互联网内容、电子邮件、应用通知、社交消息以及每天自动接收的消息都在显著的增长。这也是为什么 从McKinsey到Facebook再到Walmart都重点聚焦于大数据。
就像我们看到的90年代与2000年代的互联网泡沫,大数据同样会导致一些公司做出糟糕的设想和决策。
Hadoop毫无疑问是公司为了解决大数据需求的主要投资领域之一,而类似Facebook这些在大体积数据处理上有所建树的公司都公开的吹捧过在Hadoop上取得的成功,同样初入大数据领域的公司也必先着眼这些成功的典型。Adam Bloom的一个MIT(麻省理工学院)计算机科学校友曾对他说:“when all you have is a hammer, everything looks like a nail。”通过Hadoop的炒作,我们可以避免 功能固着(functional fixedness)这种认知偏差。
Hadoop是一个多维的解决方案,可以通过不同的方式进行部署和使用。下面就看一下公司在开始Hadoop项目之前必须了解的一些关于Hadoop和大数据的预先构想的错误理念:
在体积之外,许多工业先锋还经常提到 variety(多样)、variability(可变)、velocity(速度)和value(价值)。撇开所有单词都押头韵,关键点在于大数据并不是体积上的增长——它正在向着实时分析、结构化和非结构化来源方向发展,并被用于尝试和制定更好的决策。
综上所述,不是只有分析大体积数据才会获得价值。举个例子,超时限的存储和分析1PB的数据的价值可能比不上实时分析1GB的数据。从工具集上考虑,你可能需要一个内存数据网络进行实时的分析,从新鲜的数据上获得价值,而不是去解剖过时的数据获得价值。
当Facebook、Twitter、Yahoo!在Hadoop上豪赌时,他们同样知道HDFS和MapReduce受限于处理类似SQL语言的能力,这也是最终得以孵化的原因。基于全球上大量的数据都是通过SQL来管理,一些公司和项目都在Hadoop和SQL的兼容上狠下功夫。
在IT投资组合里有很多一直长期存在的投资,而大型机就是这么一个例子,与ERP、CRM和SCM这些系统一样演变至今。而如果大型机不想被公司或者架构遗弃,它就必须展示在现有投资环境中的价值。而VMware的许多客户在使用大型机上都遇到了速度、规模和开销的问题,但是并不是没有途径去解决这些问题,比如像vFabric SQLFire这样的内存大数据网络就可以被嵌入或者使用分布式缓存途径去解决类似队列的高速摄取、促进大型机的批处理或实时分析报告这些问题。
Hadoop最初的设计只是在实体服务器上运行,然而随着越来越多机构的采用,许多公司都希望它能作为数据中心服务在云中运行。为什么这么多的公司都希望虚拟化Hadoop?
首先要考虑管理基础设施的扩展性,VMware快速的认识到扩展计算资源,比如虚拟Hadoop节点,当数据和计算分开时会对性能有所帮助,否则如果你关闭某个Hadoop节点将丢失上面的所有数据或者添加一个没有数据的空节点。而鉴于这个原因,许多来自MapR、Hortonworks、Cloudera和Greenplum的专业Hadoop发行版都支持Project Serengeti和Hadoop Virtualization Extensions(HVE)。
首先,存在SaaS云服务解决方案。许多云服务允许你云端运行Hadoop、SQL,这无疑可以帮助你省下数据中心建造投资的时间和金钱。对于一个公有云运行时,Java开发者可以从Spring Data for Hadoop以及一些其它的GitHub中的用例获益。
Hadoop通常解释在一堆商用服务器上运行,这样就会有人认为添加一个虚拟层在带来额外支出的同时并不会有额外的价值收益。用这个观点看是存在缺陷的,你并没有考虑到数据和数据分析事实上都是动态的。想成为一个利用Hadoop能量去成长、创新及创造效率的公司,你必须改变数据的来源、分析的速度等等。
虚拟化基础设施同样可以减少物理硬件的封装,让CAPEX直接等于纯粹的商用硬件,而通过自动以及更搞笑的利用共享基础设施同样可以减少OPEX(运营成本)。
Hadoop在本地磁盘上运行,对于中小型集群它同样可以在一个共享的SAN环境下运行良好。而高带宽比如10GB Ethernet、PoE以及iSCSI对性能同样有很好的支持。
总结
宣传亦或是炒作只能作为接受新事物的参考,在做决策之前必须进行深入的了解和分析。被流言所迷惑而做出错误的决策,必然会让投资陷入危险的境地。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29