
职场效率及注意点,数据领域职业选择有哪些
01 关于数据分析和基本技能
如今,数据科学家,数据工程师,数据分析师的职位越来越热门。这些职位不仅跟数据密切相关,同时又需要具备一定的业务理解能力。大多公司也越来越重视数据在业务上的影响力。这篇文章主要想谈谈的数据分析师的微笑经验。
内容基于笔者5年多数据分析岗位上的经验及体会。面向的读者是:
①专注成为数据分析师的同学。
②对数据分析感兴趣,平时工作中也需要数据分析的同学
③同行(欢迎交流指正)
入门数据分析并不难,但想成为优秀的数据分析师并不容易。首先要过硬的数据技能,其次要有敏锐的商业嗅觉,再次是流畅的沟通和表达能力,最后不断地实践这些能力,在实战中应对商业的变化,提升分析能力,从而发挥在业务端的价值,甚至产生你的影响(make business impact)。
关于“数据分析”(Data Analyst)这一职位,通常一定规模的外企和国内的互联网、IT、金融等行业会设有专门的数据分析岗位,也有着不错的发展路径。而在一个公司里面,数据分析师可以存在于不同的部门,销售支持,财务,市场研究,R&D等等。但每个部门的侧重点也是不一样的,我原来在销售支持部门,虽说是数据分析,但理解业务,与销售端交流是很重要的。但如果是在R&D,技能上的编程要求,对架构的理解可能更重要。
数据分析最擅长的工具一定包括Excel,通常好的数据分析师一定是一个非常非常专业的Excel使用者,这其中包括了对Excel常用公式和功能的理解及使用(数据透视表,各种图表等)。其实掌握Excel基本功能也是很多其他岗位(Marketing,Finance等职位)的必须。作为一款数据处理的基础工具,市面上有太多的Excel教程。我个人的建议,可以从一本书+视频教程+自我练习的方法来入门或者进阶。
Excel更进阶的另一个大技能是VBA,它是以Visual Basic为基础的编程语言。但,掌握或者使用并不需要太强的编程背景。这也是为什么知乎上很多用户推荐用VBA作为高阶Excel的技能。VBA用的好可以玩转各大金融投行,咨询公司的数据处理自动化,报表批量产出等。VBA的优势是跟Excel的无缝衔接,能够用简单的编程实现数据自动化,或者金融模型实现,预测分析。即使在今天Python、R非常火热的数据挖掘,数据科学领域,仍然有不少公司选择使用VBA。
另一大数据技能就是SQL,SQL和Excel已经成为这一岗位在发布职位时的标配了。SQL是结构化查询语言,对接的是后台较大较系统化的数据库。它的优势是基于不同逻辑的数据抓取会很方便和有效率。基本的语法其实并不难,会使用join table、sub query,
case when、rank这些功能其实不是太难,难点在于通过不同的练习,训练出一个良好的逻辑思考能力。简言之,就是知道什么商业需求可以实现,哪些需求需要更久的时间。此外,对业务的理解也至关重要,千万不要小看这个简单的数据抓取,好的SQL实现者一定是对业务理解透彻,事半功倍的。
如果致力于从事数据分析工作,那除了掌握Excel, VBA,SQL之外,还需紧跟趋势,学习最新技能,但同时也得夯实基础。记得我2011年本科毕业的时候,跟现在2018年同样一个数据分析职位的JD是完全不一样的。而且公司或者业务层面对数据分析的重视程度也不一样。建议要不断更新自己的技能储备,至少了解现在在发生着什么,什么是基础,什么是进阶。随便贴一个Linkedin上面的数据分析岗位要求,感受一下。
这里更想强调一下对数据和商业的理解。一般三年以内可能还是在磨练技术,过了三年就开始思考更深一层的东西,就是在有了“术”的基础上,往“道”的方向思考。
理解数据并非易事,至少需要几年经验的。通常在掌握了基本技能并且熟练使用的基础上,加上累积的商业实践,一般来讲都会产生一种数据直觉。具体体现在:
第一:当遇到一个数据需求会先分析,而不是上手就做,因为有时候需求并不合理。
第二:会评估不同数据项目的时间进度和反馈频率,新手很容易不沟通,很苦逼地做了很长时间之后发现结果不是用户想要的。
第三:当出现不合理的数据时第一时间能够反应过来并调整。如果能做到这几点,效率会大大增加。
02 职业选择
①坚持数据分析师,当然这个title是可以变化的,但工作内容本身还是一脉相承的。比如我现在是在Finance部门下面的Business Finance做Finance Analyst,但我们team有专业的CFA分析师,FP&A分析师,我就是做Data Analysis。
② 转型为数据科学家(Data Scientist),需要恶补统计学,Python和R,还有不断地应用到商业实践。
③ 商业分析经理(BA Analytics Manager),该职位商业性强,沟通强,懂技术但不用去做基层的“苦力”工作,并且能够找到得力的下属做事。
④ 数据工程师(Data Engineer),比较后端的职位,技术性强,对架构,数据底层的了解更深,我的理解是比较适合理工科出身,不太希望与业务端打交道,代码逻辑很强的童鞋。
⑤咨询师(Consultant),此职位更偏重商业分析能力+沟通能力+表达能力,这个对于硬性的技术要求不高,但软性特别高。但好的咨询公司待遇相当棒,招人的条件也是很高,名校背景,很高的GPA成绩,自信表达能力,精准沟通等等,总之非常不容易。不过一般有一个咨询团队,有前段后端之分,后端(支持段)偏技术分析,前段偏表达沟通。这个职位的跨度就比较大,但是我还是鼓励各种可能性的发生。要敢想。
当然还有其他很多职位,比如数据挖掘,数据可视化工程师,产品或策略分析等等,各自有侧重。
03 职场效率及注意点
技术永远只是手段,产生价值才是王道。这里面涉及到诸多的能力需要不断磨练,比如意志力,沟通能力,演讲能力,好奇心,创造力,影响力等等。这些都是能不断塑造一个好的数据分析师的重要素质。要去make the change and influence,不只停留在数字展示。
好的身体会使你拥有更多能量。职场里面那些充满能量,对新鲜项目感兴趣,滔滔不绝做presentation的人通常都是有着很好的生活习惯,处理事情很快,吸收知识很快,愿意学习了解新事物,坚持锻炼的人。这个法则适用于大多职场。拼到后面其实是持久的耐力,就是不松懈,坚持对的事情。
别钻牛角尖,要灵活。如果一种方法试了好久都不行,停下来,问一问,试一试别的,可能会有新的出路。职场不是一个学术的地方。我们要认真做事,但是不要追着一个小的问题不放,这样很容易丢失掉大的东西, 负责任地讲,有很多项目是半途而废的,有很多数字不是准确的,我们要做的是顺势而为,抓住重点。Always focus on big picture.
先做倾听者,再做思考者,然后做好的提问者,最后做实现者。这里每一个环节都重要,先知道别人关心的是什么,有什么问题,然后要系统性考虑,有时候不要着急解决小问题,Focus on big picture,此外,提问出关键问题甚至能够帮助stakeholder更清楚了解他要的是什么,最后搞清楚了这些之后就是Action。
有意识地去跟人交流,特别是业务相关人员,以及各个条线的stakeholder,如果仅仅利用必要的时间,比如开会的时候交流彼此对业务对分析的看法,通常是不够的。我们作为分析人员,最好要走在前面,试探性的问问题,交流想法。提升自己举例子的能力,把复杂的东西通过简单的描述让别人理解很重要。
不停的总结,迭代。其实数据分析里面的分支学科还是很多的,ETL, Data Cleansing, 一些基本分析模型,Data visualization等等,不管是自己做过的项目经验,还是网上看来得好文章,或者同行交流来的新的好的内容,都可以不停的总结,试用,反馈,以此循环。长期来看是非常有好处的并且容易形成自己的体系。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29