京公网安备 11010802034615号
经营许可证编号:京B2-20210330
量化模型的八种基础
量化选股就是利用数量化的方法选择股票组合,期望该股票组合能够获得超越基准收益率的投资行为。量化选股策略总的来说可以分为两类:第一类是基本面选股,第二类是市场行为选股。
基本面选股主要有多因子模型、风格轮动模型和行业轮动模型。市场行为选股主要有资金流模型、动量反转模型、一致预期模型、趋势追踪模型和筹码选股模型。
有关量化选股业绩评价要从两个方面来考虑,一个是收益率,一个是风险指数,只是收益率高的策略并不能成为最好的策略,应该综合考虑收益率和风险情况才能判断一个选股的策略的好坏。量化选股需要考虑的是在承担多大的风险情况下的收益率情况。
简单的说一下八种基本的量化模型,这个也是在网上经常被提到的模型。
多因子模型是应用最广泛的一种选股模型,基本原理是采用一系列的因子作为选股标准,满足这些因子的股票则被买入,不满足的则卖出。多因子模型相对来说比较稳定,因为在不同市场条件下,总有一些因子会发挥作用。
风格轮动模型是利用市场的风格特征进行投资,比如有时候市场偏好小盘股,有时候偏好大盘股,如果是风格转换的初期介入,则可以获得较大的超额收益。
行业轮动模型与风格轮动类似,由于经济周期的原因,总有一些行业先启动,有的行业跟随。在经济周期过程中,依次对这些轮动的行业进行配置,则比买入持有策略有更好的效果。
资金流选股模型的基本思想是利用资金的流向来判断股票的涨跌,如果资金流入,股票应该会上涨,如果资金流出,则股票应该下跌。所以将资金流入流出的情况编成指标,则可以利用该指标来判断在未来一段时间股票的涨跌情况了。
动量反转模型是指股票的的强弱变化情况,过去一段时间强的股票,在未来一段时间继续保持强势,过去一段时间弱的股票,在未来一段时间继续弱势,这叫做动量效应。过去一段时间强的股票在未来一段时间会走弱,过去一段时间弱势的股票在未来一段时间会走强,这叫做反转效应。如果判定动量效应会持续,则应该买入强势股,如果判断会出现反转效应,则应该买入弱势股。
一致预期模型是指市场上的投资者可能会对某些信息产生一致的看法,比如大多量加牛人看好某一只股票,可能这只股票在未来一段时间会上涨;如果大多数量加牛人看空某一只股票,可能这只股票在未来一段时间会下跌。一致预期策略就是利用大多数牛人(股票分析师)的看法来进行股票的买入卖出操作。
趋势追踪模型是属于图形交易的一种,就是当股价出现上涨趋势的时候,则追涨买入;如果出现下跌趋势的时候,则杀跌卖出,本质上是一种追涨杀跌策略。判断趋势的指标有很多种,包括MA,EMA,MACD等,其中最简单也是最有效的是均线策略。
筹码选股模型是另外一种市场行为策略,基本思想是,如果主力资金要拉升一只股票,会慢慢收集筹码,如果主力资金要卖出一只股票,则会慢慢分派筹码,所以根据筹码的分布和变动情况,就可以预测股票的未来是上涨还是下跌。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16