京公网安备 11010802034615号
经营许可证编号:京B2-20210330
浅析区块链技术如何改变AI技术
区块链被吹捧为一种新兴技术,它有可能对每个行业造成影响。区块链的分布式系统与当今使用的固有集中式操作系统相对立。采用分布式数据库架构形式,某些操作的记录和身份验证取决于多方的协议,而不仅仅是单一的权限。
与其他集中式技术相比,区块链使操作更安全,更快速,更透明。
区块链已经给金融领域带来了很大的影响,像比特币,以太坊和莱特币这样的加密货币已经成为当前的关注点。现在该技术也已扩展到其他领域,如广告,医疗保健,商业物流,安全等。
帮助AI解释自己:AI当前面临的一大问题是黑盒的不可解释性和难以理解性。因此,清晰的审计跟踪可以提高数据的可信性,还可以提高模型的可信度,也为追溯机器决策过程提供了一条清晰的途径。区块链的不可篡改、无法伪造时间戳等特性无疑是建立审计跟踪的最佳解决方案。
提高人工智能的有效性:安全的数据共享意味着需要更多的数据、更好的模型、更好的操作、更好的结果,以及更好的新数据。区块链分布式的数据库本质,获取更多更真实的数据将不是难题。
降低进入市场的壁垒:首先,区块链技术可以保护任何人的数据,使得我们做到自己的数据自己做主,而不会出现数据寡头这样的局面。其次,区块链上的数据都是经过验证的可信数据。此外,它将允许出现“数据市场”、“模型市场”这样的新市场,最后甚至出现一个AI市场。因此,把数据共享、新的市场、以及区块链数据验证技术整合在一起,将降低小企业进入市场的门槛,缩小与高科技巨头间的竞争优势。在降低市场准入门槛方面,区块链实际上解决了两个问题,即提供更广泛的数据访问和更有效的数据货币化机制。
增加人为信任:一旦人类社会的部分工作由自主虚拟代理机器管理时,清晰的审计跟踪将帮助机器人之间互相信任,并且使我们相信他们。区块链还能增加机器对机器的交互,并为交易提供了一个安全的方式来共享数据和协调决策。
降低重大风险几率:在拥有特定智能合约的DAO中编写AI程序,只有其自身才能执行,这将大大减少AI灾难性事故的发生。
其实区块链和人工智能是技术领域的两个极端方面:一个是在闭合的数据平台中创建的集中化智能,另一个则是在开放的数据环境中推动分布式应用。但是,如果能找到一个聪明的方法来使它们融合在一起,那么积极的外部效应就能无限放大。
现阶段的人工智能算法,使用了很多大规模的并行计算,每个节点的计算任务不同,甚至每个节点上处理的数据都不一致,这些与区块链的基本原则有差异。因此,我一直认为,想通过区块链技术来提升人工智能的性能,现阶段大体是不可行的。
那么,区块链和人工智能的结合点在哪里呢?这个问题我思考了很久,得到的答案是:数字加密货币可以让人工智能拥有自己的账户,从而深度参与到人类社会的各种社会活动和经济活动当中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16