京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python设计模式之观察者模式实例
关于设计模式中的观察者模式,定义如下(维基百科):
觀察者模式(有時又被稱為發布/訂閱模式)是軟體設計模式的一種。在此種模式中,一個目標物件管理所有相依於它的觀察者物件,並且在它本身的狀態改變時主動發出通知。這通常透過呼叫各觀察者所提供的方法來實現。此種模式通常被用來實作事件處理系統。
简单来说,一个被观察者有很多观察者,被观察者的状态的改变会引起所有观察者的响应操作。
那么我们用Python2.7来实现观察者模式。
Python中的集合set
集合(set),类似于列表(list),但是它没有重复的元素,它的doc内容如下:
Build an unordered collection of unique elements.
下面是在ipython中进行的几个简单的集合操作。
In [2]: myset.add(1)
In [3]: myset.add(2)
In [4]: myset.add('s')
In [5]: print myset
set([1, 2, 's'])
In [6]: myset.add('s')
In [7]: print myset
set([1, 2, 's'])
In [8]: myset.remove(3)
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
<ipython-input-8-a93073f8a2af> in <module>()
----> 1 myset.remove(3)
KeyError: 3
In [9]: myset.remove(1)
In [10]: print myset
set([2, 's'])
通过内置的set()可以产生一个空的集合对象,也可以在set中传入一些参数,例如一个列表:
最常用的方法就是add和remove了,更多内容可以参考http://docs.python.org/2/library/stdtypes.html#set。
一个简单的观察者模式的实现
if __name__ == '__main__':
foo01 = Observer("hi, i am foo01")
foo02 = Observer("hi, i am foo02")
observers = set()
observers.add(foo01)
observers.add(foo01)
observers.add(foo02)
print observers
for ob in observers:
ob.update()
下面是运行结果:
运行结果中第一行是集合observers的内容,其包含了两个Observer实例,这些实例所处的内存地址在每次运行时可能有不同。而
就可以看成多个观察者产生响应。
当然,这种实现并不好——被观察者也应该是一个实例。
更加完善的观察者模式实现
class SubjectInterface(object):
def __init__(self):
self.observers = set()
def addObserver(self, ob):
self.observers.add(ob)
def delObserver(self, ob):
self.observers.remove(ob)
def notifyObservers(self):
for ob in self.observers:
ob.update()
class Observer01(ObserverInterface):
def __init__(self, s):
self.s = s
def update(self):
print self.s
class Observer02(ObserverInterface):
def __init__(self, num1, num2):
self.num1 = num1
self.num2 = num2
def update(self):
print self.num1 + self.num2
class Subject01(SubjectInterface):
def __init__(self):
SubjectInterface.__init__(self)
if __name__ == '__main__':
ob01 = Observer01("hi, i am ob01")
ob02 = Observer02("hello,","i am ob02")
observers = set()
sb01 = Subject01()
sb01.addObserver(ob01)
sb01.addObserver(ob02)
sb01.notifyObservers()
运行结果如下:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27