京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用现代机器学习挖掘数据价值
无可否认,我们已经步入大数据时代,轻敲键盘就能获得海量数据。随着物联网(IoT)的发展,数据量还会进一步扩增。今后十年里,预计有 500-700亿联网设备涌入市场,忽视如此大规模的数据并非明智之选。
企业可以在机器学习的帮助下充分利用大数据。这里提到的机器学习不是科幻电影里面与人类为敌的机器人,现代机器学习致力于挖掘数据中的价值。
IBM 计划向开发者开放 Watson(IBM 超级计算机)海量 API 中的部分接口,但是 Watson 并不是唯一的机器学习(ML)系统,还包括Google Deepmind(Google Brain 项目的一部分)、斯坦福的 Deepdive(与 DARPA,即美国国防先进研究项目局合作)、微软的Azure 平台和 MIT 的 ConceptNet5。
提高工作效率
企业要想提供切实可行的解决方案,效率至关重要。这体现在产品和服务的方方面面,从设备的原型阶段到市场推广阶段,效率始终是根本。
机器学习能够迅速处理从传感器、室内系统和外部合作伙伴获取的数据,从数据中得出新的结论,最大化利用各种综合信息,从而精简当前工作流程。这一提高效率的方式对企业和个人都适用。
举个例子:Attitude Sports 老板大卫 · 哈斯(David Haase)报名参加了环美自行车竞赛(Race Across America),在3000英里的比赛中他排名第二,能取得这样的成绩归功了大数据和机器学习。他的团队实时监测他的生物数据,并与其他的数据相结合。在九天的时间里,团队追踪风速等数据,判断休息和补充能量的最佳时间点。正是这一系列的数据分析使得大卫·哈斯足足领先了第三名一天的时间。
通往创新的道路
诚然,持续不断的创新不容易,而且在创新的时候,并不能确定这个新点子的实用价值。机器学习的优势在于能从各个方面评估这项创新,比如确定现有产品的缺陷、前瞻性分析或者发现之前不为他人注意模式。
DARPA(美国国防先进研究项目局)的使命在于创新,DARPA在很多不为大众所知的高度机密项目上运用了大数据和机器学习。身为互联网的前身(ARPANET),DARPA使用人工智能系统检测软件漏洞。在商业上,以环保著称的波音 787 机型极度依赖数据反应实时状况,创新性地解决环保问题。
智能化
新的商业模式是数据应用必然的副产品。你的公司如何向顾客传播价值?你如何收集和利用数据?
大数据能够挖掘之前没有意识到模式和联结,并实时体现其价值:一线员工能够迅速处理站在他面前用户的问题,用户也能从服务中得到价值,提供反馈。这一观点必将改变业务经营模式。
以 Local Motors 为例,其使用 3D 自动生产制造技术,能够在40个小时以内打印出一辆可操控的汽车。只要有了正确的数据,一个小型、高效的生产工厂就能满足客户的定制需求——这是一种全新的生产和销售汽车的模式。
大数据分析和机器学习向已有的高效方法论和创新论发起了强有力的挑战。它们甚至可以颠覆传统行业运营方式,大数据和机器学习必将驱动公司业务的发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01