京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据背景下如何做好全面预算
随着大数据概念的普及,商业智能、多维分析、数据挖掘、人工智能、机器学习等概念纷纷引入到企业管理应用领域。在大数据背景下,如何通过全面预算与大数据相结合的方式,发挥大数据在数据分析、数据挖掘方面的价值,使全面预算管理真正成为连通企业战略和经营的利器,为企业决策支撑提供助力,是当下企业信息化建设中必须重点考虑的一环。
针对当前企业密切关注的“大数据背景下如何做好全面预算”问题,本土化全面预算系统领军企业智达方通认为,企业想成为大数据时代的弄潮儿,不仅需要建立完备的全面预算体系,还需在全面预算系统的基础上,运用大数据为全面预算管理提供新路径、新工具和新方法,变现大数据价值,助力企业更全面、更深刻的洞察经营管理状态,为企业决策提供数据支撑。
全面预算软件系统作为企业的预算管理以及决策支持平台系统,会有很多业务系统与其对接,以提供业务实际数据,如财务总账、项目管理、资金管理、人事、生产制造、库存管理、资产管理等各系统。随着企业的业务越来越复杂,规模越来越大,各业务系统产生的数据也会越来越多。尽管推送到预算系统的数据经过清洗转换降低了数据量,但其数据量仍然会随企业业务的变化而增长。这时就在实际发生的业务数据层面上形成了大数据。
在预算编报和测算角度,随着企业规模和业务复杂程度的增加,编报产生的计划预算数据也会越来越多,加上多版本,多场景,以及数年的累计,数据量增长到亿、百亿级别也是非常可能的。
全面预算作为管理会计信息化和财务分析领域的传统业务,其可以采用的数据分析方式主要有两种:EDA(Exploratory Data Analysis)-探索性数据分析;CDA(Confirmatory Data Analysis)-验证性数据分析。
探索性数据分析(EDA)用于找到数据间的模式和相关性,是一种“参考答案”的获取。应用场景包括大家熟知的“啤酒尿布”类数据挖掘应用,工具包括SAS,SPSS这类数据挖掘软件以及R语言类语言工具。探索性数据分析的优点是可以从一堆貌似杂乱无章的数据中找到一些相关性和模式来辅助决策,其缺点是有可能会找到一些无意义的相关性,比如所有生过孩子的用户都是女性。
验证性数据分析(CDA),是在明确了分析模型和算法的情况下,需要基于已有数据计算出结果,可以称之为是一种“准确答案“的获取。典型的应用场景就是基于多维数据仓库的OLAP分析应用。在企业应用最广泛的就是EPM-Enterprise Performance Management(企业绩效管理),其中包括全面预算,商业智能等应用。与"啤酒尿布”这种探索性数据挖掘应用相比,OLAP分析的结果只能是唯一的准确答案。比如通过企业管理要求设定的业务规则,计算出的利润率只能是一个数字,不可能是“利润率有可能是11.5%”这种参考答案。验证性数据分析类系统包括Oracle Hyperion, IBM Cognos以及智达方通Intcube EPM,其共同特点为都是基于多维数据仓库的OLAP分析工具平台。
另外,基于Hadoop,HBase,Kylin等开源项目的方案,目前仍然不能满足全面预算或财务分析信息化领域的需求,原因是企业在全面预算或财务分析方面的需求,不是仅仅基于大数据的查询或搜索这些“只读操作”就能满足需求。全面预算领域需要能够支持复杂的业务规则计算,并且这些业务规则在实际应用中可以经常由最终使用者,如财务部门,业务部门人员调整更改,而无需开发人员通过编写程序或者SQL脚本实现分析方法的调整。这就要求支持MDX的OLAP计算引擎成为全面预算软件系统的必要条件,而以上这几个开源项目并不能支持MDX等计算脚本功能。
与Tableau和一些BI仪表板项目的只读数据可视化工具相比,全面预算的编报过程,以及业务规则的运算过程,会产生大量的写操作。因此,对数据仓库平台的要求有两点:一是支持频繁的写操作,二是支持业务规则脚本计算。目前对于国内的商用数据仓库软件提供商来说,实现这两点并非难事,但真正的难点在于如何在十亿级甚至百亿级的数据量下,保证单个数据集市-CUBE能有很好的读写和业务规则计算性能,这是所有多维数据仓库软件厂商需要面临的挑战。针对该问题,国内多维数据仓库领域及企业绩效管理领域技术专家、北京智达方通总经理蔡志宏先生认为,其解决方案应该是在数据仓库核心功能开发时,支持数据的分布式存储,通过数据的多节点存储,提升读写IO效率,同时要优化动态计算效率,优化预计算和动态计算之间的平衡,以及优化动态计算时数据块中的寻址效率。
可以预见的是,大数据时代的到来将改变传统全面预算实施的局限性,为企业实施全面预算提供更全面可靠的全样本数据支撑,给全面预算管理提供新机遇和新思路。未来,智达方通将以匠人之心,继续深入研究大数据背景下的企业全面预算管理模式,为企业实现信息化管理提供更优质的全面预算解决方案。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15