
大数据背景下如何做好全面预算
随着大数据概念的普及,商业智能、多维分析、数据挖掘、人工智能、机器学习等概念纷纷引入到企业管理应用领域。在大数据背景下,如何通过全面预算与大数据相结合的方式,发挥大数据在数据分析、数据挖掘方面的价值,使全面预算管理真正成为连通企业战略和经营的利器,为企业决策支撑提供助力,是当下企业信息化建设中必须重点考虑的一环。
针对当前企业密切关注的“大数据背景下如何做好全面预算”问题,本土化全面预算系统领军企业智达方通认为,企业想成为大数据时代的弄潮儿,不仅需要建立完备的全面预算体系,还需在全面预算系统的基础上,运用大数据为全面预算管理提供新路径、新工具和新方法,变现大数据价值,助力企业更全面、更深刻的洞察经营管理状态,为企业决策提供数据支撑。
全面预算软件系统作为企业的预算管理以及决策支持平台系统,会有很多业务系统与其对接,以提供业务实际数据,如财务总账、项目管理、资金管理、人事、生产制造、库存管理、资产管理等各系统。随着企业的业务越来越复杂,规模越来越大,各业务系统产生的数据也会越来越多。尽管推送到预算系统的数据经过清洗转换降低了数据量,但其数据量仍然会随企业业务的变化而增长。这时就在实际发生的业务数据层面上形成了大数据。
在预算编报和测算角度,随着企业规模和业务复杂程度的增加,编报产生的计划预算数据也会越来越多,加上多版本,多场景,以及数年的累计,数据量增长到亿、百亿级别也是非常可能的。
全面预算作为管理会计信息化和财务分析领域的传统业务,其可以采用的数据分析方式主要有两种:EDA(Exploratory Data Analysis)-探索性数据分析;CDA(Confirmatory Data Analysis)-验证性数据分析。
探索性数据分析(EDA)用于找到数据间的模式和相关性,是一种“参考答案”的获取。应用场景包括大家熟知的“啤酒尿布”类数据挖掘应用,工具包括SAS,SPSS这类数据挖掘软件以及R语言类语言工具。探索性数据分析的优点是可以从一堆貌似杂乱无章的数据中找到一些相关性和模式来辅助决策,其缺点是有可能会找到一些无意义的相关性,比如所有生过孩子的用户都是女性。
验证性数据分析(CDA),是在明确了分析模型和算法的情况下,需要基于已有数据计算出结果,可以称之为是一种“准确答案“的获取。典型的应用场景就是基于多维数据仓库的OLAP分析应用。在企业应用最广泛的就是EPM-Enterprise Performance Management(企业绩效管理),其中包括全面预算,商业智能等应用。与"啤酒尿布”这种探索性数据挖掘应用相比,OLAP分析的结果只能是唯一的准确答案。比如通过企业管理要求设定的业务规则,计算出的利润率只能是一个数字,不可能是“利润率有可能是11.5%”这种参考答案。验证性数据分析类系统包括Oracle Hyperion, IBM Cognos以及智达方通Intcube EPM,其共同特点为都是基于多维数据仓库的OLAP分析工具平台。
另外,基于Hadoop,HBase,Kylin等开源项目的方案,目前仍然不能满足全面预算或财务分析信息化领域的需求,原因是企业在全面预算或财务分析方面的需求,不是仅仅基于大数据的查询或搜索这些“只读操作”就能满足需求。全面预算领域需要能够支持复杂的业务规则计算,并且这些业务规则在实际应用中可以经常由最终使用者,如财务部门,业务部门人员调整更改,而无需开发人员通过编写程序或者SQL脚本实现分析方法的调整。这就要求支持MDX的OLAP计算引擎成为全面预算软件系统的必要条件,而以上这几个开源项目并不能支持MDX等计算脚本功能。
与Tableau和一些BI仪表板项目的只读数据可视化工具相比,全面预算的编报过程,以及业务规则的运算过程,会产生大量的写操作。因此,对数据仓库平台的要求有两点:一是支持频繁的写操作,二是支持业务规则脚本计算。目前对于国内的商用数据仓库软件提供商来说,实现这两点并非难事,但真正的难点在于如何在十亿级甚至百亿级的数据量下,保证单个数据集市-CUBE能有很好的读写和业务规则计算性能,这是所有多维数据仓库软件厂商需要面临的挑战。针对该问题,国内多维数据仓库领域及企业绩效管理领域技术专家、北京智达方通总经理蔡志宏先生认为,其解决方案应该是在数据仓库核心功能开发时,支持数据的分布式存储,通过数据的多节点存储,提升读写IO效率,同时要优化动态计算效率,优化预计算和动态计算之间的平衡,以及优化动态计算时数据块中的寻址效率。
可以预见的是,大数据时代的到来将改变传统全面预算实施的局限性,为企业实施全面预算提供更全面可靠的全样本数据支撑,给全面预算管理提供新机遇和新思路。未来,智达方通将以匠人之心,继续深入研究大数据背景下的企业全面预算管理模式,为企业实现信息化管理提供更优质的全面预算解决方案。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18