
大数据背景下如何做好全面预算
随着大数据概念的普及,商业智能、多维分析、数据挖掘、人工智能、机器学习等概念纷纷引入到企业管理应用领域。在大数据背景下,如何通过全面预算与大数据相结合的方式,发挥大数据在数据分析、数据挖掘方面的价值,使全面预算管理真正成为连通企业战略和经营的利器,为企业决策支撑提供助力,是当下企业信息化建设中必须重点考虑的一环。
针对当前企业密切关注的“大数据背景下如何做好全面预算”问题,本土化全面预算系统领军企业智达方通认为,企业想成为大数据时代的弄潮儿,不仅需要建立完备的全面预算体系,还需在全面预算系统的基础上,运用大数据为全面预算管理提供新路径、新工具和新方法,变现大数据价值,助力企业更全面、更深刻的洞察经营管理状态,为企业决策提供数据支撑。
全面预算软件系统作为企业的预算管理以及决策支持平台系统,会有很多业务系统与其对接,以提供业务实际数据,如财务总账、项目管理、资金管理、人事、生产制造、库存管理、资产管理等各系统。随着企业的业务越来越复杂,规模越来越大,各业务系统产生的数据也会越来越多。尽管推送到预算系统的数据经过清洗转换降低了数据量,但其数据量仍然会随企业业务的变化而增长。这时就在实际发生的业务数据层面上形成了大数据。
在预算编报和测算角度,随着企业规模和业务复杂程度的增加,编报产生的计划预算数据也会越来越多,加上多版本,多场景,以及数年的累计,数据量增长到亿、百亿级别也是非常可能的。
全面预算作为管理会计信息化和财务分析领域的传统业务,其可以采用的数据分析方式主要有两种:EDA(Exploratory Data Analysis)-探索性数据分析;CDA(Confirmatory Data Analysis)-验证性数据分析。
探索性数据分析(EDA)用于找到数据间的模式和相关性,是一种“参考答案”的获取。应用场景包括大家熟知的“啤酒尿布”类数据挖掘应用,工具包括SAS,SPSS这类数据挖掘软件以及R语言类语言工具。探索性数据分析的优点是可以从一堆貌似杂乱无章的数据中找到一些相关性和模式来辅助决策,其缺点是有可能会找到一些无意义的相关性,比如所有生过孩子的用户都是女性。
验证性数据分析(CDA),是在明确了分析模型和算法的情况下,需要基于已有数据计算出结果,可以称之为是一种“准确答案“的获取。典型的应用场景就是基于多维数据仓库的OLAP分析应用。在企业应用最广泛的就是EPM-Enterprise Performance Management(企业绩效管理),其中包括全面预算,商业智能等应用。与"啤酒尿布”这种探索性数据挖掘应用相比,OLAP分析的结果只能是唯一的准确答案。比如通过企业管理要求设定的业务规则,计算出的利润率只能是一个数字,不可能是“利润率有可能是11.5%”这种参考答案。验证性数据分析类系统包括Oracle Hyperion, IBM Cognos以及智达方通Intcube EPM,其共同特点为都是基于多维数据仓库的OLAP分析工具平台。
另外,基于Hadoop,HBase,Kylin等开源项目的方案,目前仍然不能满足全面预算或财务分析信息化领域的需求,原因是企业在全面预算或财务分析方面的需求,不是仅仅基于大数据的查询或搜索这些“只读操作”就能满足需求。全面预算领域需要能够支持复杂的业务规则计算,并且这些业务规则在实际应用中可以经常由最终使用者,如财务部门,业务部门人员调整更改,而无需开发人员通过编写程序或者SQL脚本实现分析方法的调整。这就要求支持MDX的OLAP计算引擎成为全面预算软件系统的必要条件,而以上这几个开源项目并不能支持MDX等计算脚本功能。
与Tableau和一些BI仪表板项目的只读数据可视化工具相比,全面预算的编报过程,以及业务规则的运算过程,会产生大量的写操作。因此,对数据仓库平台的要求有两点:一是支持频繁的写操作,二是支持业务规则脚本计算。目前对于国内的商用数据仓库软件提供商来说,实现这两点并非难事,但真正的难点在于如何在十亿级甚至百亿级的数据量下,保证单个数据集市-CUBE能有很好的读写和业务规则计算性能,这是所有多维数据仓库软件厂商需要面临的挑战。针对该问题,国内多维数据仓库领域及企业绩效管理领域技术专家、北京智达方通总经理蔡志宏先生认为,其解决方案应该是在数据仓库核心功能开发时,支持数据的分布式存储,通过数据的多节点存储,提升读写IO效率,同时要优化动态计算效率,优化预计算和动态计算之间的平衡,以及优化动态计算时数据块中的寻址效率。
可以预见的是,大数据时代的到来将改变传统全面预算实施的局限性,为企业实施全面预算提供更全面可靠的全样本数据支撑,给全面预算管理提供新机遇和新思路。未来,智达方通将以匠人之心,继续深入研究大数据背景下的企业全面预算管理模式,为企业实现信息化管理提供更优质的全面预算解决方案。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28