京公网安备 11010802034615号
经营许可证编号:京B2-20210330
物联网促使消费规划从预测性向准确性演变
在典型的消费产品供应链中,规划是一种合作行为,它涉及从原材料供应商到制造商再到分销商环节的每个人。然而,该过程中没有直接参与的群体则是最终购买和使用产品的消费者。
随着物联网的出现,这种情况将会发生巨大的变化。物联网提供了用户使用和购买消费品的数据,使企业能够从传统的预测发展到基于实际消费的规划。
市场营销研究所(Marketing Science Institute)援引英特尔公司(Intel Corporation)Peter Levin的话“通过廉价的传感器、大众化的分析和新的平台工具,我们对世界的认知正从‘模拟’转向‘衡量’。”这是一种很好的了解事情变化的方式。制造商和供应商可以随时获取信息,以便对产品做出关键决策。企业不再专注于预测,而是专注于实时消费。
物联网已经成为许多供应链的一部分
库存和仓库管理,供应链上层管理,甚至车队管理都已经开始使用物联网技术了。麦肯锡报告称,到2025年,物联网将产生2.7到6.2万亿美元的巨大经济影响。想象一下,到2020年,预计由500亿台联网设备产生的数据量和洞察力将有多大。通过分析大量基于物联网的数据,能够做出更好的供应链决策将是一个真正的分水岭。所有这些都是可能的,因为物联网在生产和消费之间建立了更直接的联系。
实时数据意味着更好的消费规划
目前,许多消费品制造商和经销商都在使用过时的预测方法来为即将到来的购买季节制定“游戏计划”。长期以来,预测一直被认为是唯一的选择。预测消费者的使用和购买某个产品是一项高度主观的活动。所以当企业预测错误时,就会产生巨大的问题。
预测对于那些希望在市场未过度饱和的情况下销售尽可能多的产品的品牌商来说是至关重要的。最近,彪马(Puma)的索菲娅•韦伯斯特(Sophia Webster)运动鞋——许多人认为它是一款“必备”产品——只在一天内就卖光了。鉴于这一情况,该公司本可以通过更好的产品生产和规划获得更多利润,但他们却采取了向市场投放五种款式的方式,这不仅限制了销售,而且也影响了公司在消费者中的声誉,促使他们转向竞争对手的产品。
另一个例子是Kylie Cosmetics,凯莉·卡戴珊的化妆品系列。这条产品线在三个小时内就售罄,就像她的妹妹金·卡戴珊的服装系列一样。通过更好的预测和分析,该品牌可能会获得一个更好的初次发布结果。
物联网的出现改变了这一切。它通过提供一种实时直接从消费者获取的真实数据的方法来授权公司。通过这些,你可以知道产品何时被使用,使用者是谁,以及使用频率。所有这些都转化为一种非常有效的规划方式。
问题是,数据是如何被捕获的?我们拿一双鞋为例吧。一个消费者买了一双联网的运动鞋。那么该运动鞋就收集了有关使用、磨损和整体性能的数据。然后这些信息可以被发送回公司。该公司可以利用这些信息对其产品线进行调整,也许是为了提高整体质量,或者它可以发布有关新模型的信息,以鼓励消费者回来更换新品。
该公司了解了该产品的使用者,使用地点,以及使用频率。所有这些都转化为高度可用的数据,可以转换公司的进一步生产、新产品部署,甚至设计。
消费计划改善业务流程的方式
数字化时代,消费者即是数字。他们通过电话、智能家居和其他应用程序连接起来。这样,消费者就可以从数字服务中获益,这些服务旨在与内置物联网传感器技术的产品产生无缝对接。
对于消费品公司来说,除了获得更好的供应链可见性以外还有很多好处。随着实时数据收集和分析成为常态,先进的供应链就能够根据实际消费而不是预测来管理产品的补充。
通过以物联网驱动的计划,消费品公司可以以更敏捷的方式运作,根据实际需求快速地将产品转移到另一个位置。他们知道何时生产以及发送更多的产品——甚至是何时将其直接补充到消费者的家中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17