
数据分析第1步:学会用数字思考
学会用数字思考
无论是做项目报告,还是跟老板汇报,在描述事情的时候,我们都要慢慢练习,学会用数字思考,把这件事情用一个可以量化的数字描述出来,可以让我们的观点,更有说服力。
比如公司效益持续下滑,需要一些方案来改善现状。这件事情,在不会用数字思考的人那里,说出来是这样的
再这样下去,公司要亏钱了,我有两个建议:
1- 赶紧发布新开发的产品,用这些产品刺激销售量,提升收益
2- 还有适当的削减一部分人,节省人事费用开支
我觉得这样咱们很对就能重新盈利的。
同样的事情,在习惯用数字描述的人那里,说出来是这样的。
如果公司继续维持现状,七个月以后,公司就会陷入赤字了,不过,我细致的做了一下数据模拟,如果能够在3个月内完成以下动作,盈利还是比较乐观的:
1- 新开发的商品尽快上市,刺激产品销售量,预计可以带来10%的销量增长。
2- 对重复人力、冗余人力进行适当削减,在不影响生产的情况下,大约可以节省15%的人事费用。
综合以上估算,预计3个月后,利润能达到10亿(日元)
很明显,第2种描述的方式更有说服力。因为数字给我们一个直观的衡量依据,让我们在对比自己的价值体系后,对结果有一个更明确的期望。
/ 2 /
用户思维,分析数据结构
老板要让我们针对去年的数据,出个报告,你会怎么写?
去年整体销售状况还不错,很稳步的上升。出了几款新产品,销量也非常可观。
今年我们再多推几款新产品,争取延续去年的趋势,让销售业绩再创新高。
你觉得上面的汇报怎么样?除了一堆的好话,看不到实际的内容。
怎么把报告写到老板的心坎里去呢?一个中心思想:从用户思维出发,分析数据结构。
老板关心的是什么?今年的销售额上升了没有?成本有没有增加?新开发的产品,到底赚没赚钱?有什么成功经验,可以推广到其他产品,实现更多的盈利?
因此,在制作表格之前,我们最好,按照用户的思维,把数据结构进行拆分,梳理出对应的结构框架。
有了个框架之后,我们再对数据进行分类汇总,输出对应的结论式描述,让老板能够看到他们想要的数据,而且听的很舒服。
结论式描述非常的重要,因为它可以让我们用一句话,把老板的注意力吸引住。
比如上面的图表,用销售额增长16%,和销售量降低了40%这个两个结论,让我们快速的对当年的销售状况,有了一个直观的印象,并且想去了解这两个数据背后的故事。
千万别直接丢一个图表出来,什么都不说,这和听到电话那头说“猜猜我是谁”一样,让人感觉无聊和无知。
/ 3 /
如何分析数据结构?
很多时候,在密密麻麻的数据面前,我们曾经叫好的、收藏的那些技巧、方法,突然会变的不灵光了。如何分析数据的结构呢?先思考数据关键指标。
1- 先思考数据关键指标
我们可以通过下面几个方法,来寻找写关键指标。
1- 老板经常问你的数据。销量怎么样啊?成本有没有上升啊等等,老板关心的肯定是关键数据。
2- 每天都要重复统计的数据。销售实际、计划啊,生产数量、质量啊等等。
3- 以前的报告中传承下来的指标。很多的表格,我们都是从上一任同事那里交接过来的,很多数据都已经梳理好了,我们只需要输出的时候突出一下就好。
这些指标的根本出发点就是:梳理用户的关注点,找到创造利润的因素(价值动因)。
2- 用一个数字来说明结果
关键指标出来之后,切记不要从1月1号到12月31号,或者从产品1到产品10,把所有的数据都罗列给老板看。
而是把这些数据、按照时间或者空间进行汇总,用一个数字、一个结论来说明结果。
3- 构思数据结构的诀窍
在思考把哪些数据呈现在报告里的时候,有两个重点:
1- 先大致完成框架。
2- 尽量让数字联动。
1)先大致完成框架
意思就是一开始,不要想着把所有的项目、所有的数据都加进来。一方面,这样会耽误表格制作的进度;另一方面,数据一多,我们很容易失去耐心,数据越理越乱。
比如要整理销售数据明细,不要一股脑的,把事业部A、B、C…产品1、2、3,地区1、2、3等等都全部填进来。可以大致的写一下:产品收入、服务收入。
然后再慢慢的填写详细的数据。而且这个详细的数据,最好是另建一个工作表,这样之前的框架表格,可以作为目录,让整个Excel文档的结构,更加的清晰。
2)尽量让数字联动
就是让相关的指标、数据都联动起来。用公式,把这些数据连接起来,这样我们修改任何一个参数,最后的计算结果,都有联动发生变化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01