京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析第1步:学会用数字思考
学会用数字思考
无论是做项目报告,还是跟老板汇报,在描述事情的时候,我们都要慢慢练习,学会用数字思考,把这件事情用一个可以量化的数字描述出来,可以让我们的观点,更有说服力。
比如公司效益持续下滑,需要一些方案来改善现状。这件事情,在不会用数字思考的人那里,说出来是这样的
再这样下去,公司要亏钱了,我有两个建议:
1- 赶紧发布新开发的产品,用这些产品刺激销售量,提升收益
2- 还有适当的削减一部分人,节省人事费用开支
我觉得这样咱们很对就能重新盈利的。
同样的事情,在习惯用数字描述的人那里,说出来是这样的。
如果公司继续维持现状,七个月以后,公司就会陷入赤字了,不过,我细致的做了一下数据模拟,如果能够在3个月内完成以下动作,盈利还是比较乐观的:
1- 新开发的商品尽快上市,刺激产品销售量,预计可以带来10%的销量增长。
2- 对重复人力、冗余人力进行适当削减,在不影响生产的情况下,大约可以节省15%的人事费用。
综合以上估算,预计3个月后,利润能达到10亿(日元)
很明显,第2种描述的方式更有说服力。因为数字给我们一个直观的衡量依据,让我们在对比自己的价值体系后,对结果有一个更明确的期望。
/ 2 /
用户思维,分析数据结构
老板要让我们针对去年的数据,出个报告,你会怎么写?
去年整体销售状况还不错,很稳步的上升。出了几款新产品,销量也非常可观。
今年我们再多推几款新产品,争取延续去年的趋势,让销售业绩再创新高。
你觉得上面的汇报怎么样?除了一堆的好话,看不到实际的内容。
怎么把报告写到老板的心坎里去呢?一个中心思想:从用户思维出发,分析数据结构。
老板关心的是什么?今年的销售额上升了没有?成本有没有增加?新开发的产品,到底赚没赚钱?有什么成功经验,可以推广到其他产品,实现更多的盈利?
因此,在制作表格之前,我们最好,按照用户的思维,把数据结构进行拆分,梳理出对应的结构框架。
有了个框架之后,我们再对数据进行分类汇总,输出对应的结论式描述,让老板能够看到他们想要的数据,而且听的很舒服。
结论式描述非常的重要,因为它可以让我们用一句话,把老板的注意力吸引住。
比如上面的图表,用销售额增长16%,和销售量降低了40%这个两个结论,让我们快速的对当年的销售状况,有了一个直观的印象,并且想去了解这两个数据背后的故事。
千万别直接丢一个图表出来,什么都不说,这和听到电话那头说“猜猜我是谁”一样,让人感觉无聊和无知。
/ 3 /
如何分析数据结构?
很多时候,在密密麻麻的数据面前,我们曾经叫好的、收藏的那些技巧、方法,突然会变的不灵光了。如何分析数据的结构呢?先思考数据关键指标。
1- 先思考数据关键指标
我们可以通过下面几个方法,来寻找写关键指标。
1- 老板经常问你的数据。销量怎么样啊?成本有没有上升啊等等,老板关心的肯定是关键数据。
2- 每天都要重复统计的数据。销售实际、计划啊,生产数量、质量啊等等。
3- 以前的报告中传承下来的指标。很多的表格,我们都是从上一任同事那里交接过来的,很多数据都已经梳理好了,我们只需要输出的时候突出一下就好。
这些指标的根本出发点就是:梳理用户的关注点,找到创造利润的因素(价值动因)。
2- 用一个数字来说明结果
关键指标出来之后,切记不要从1月1号到12月31号,或者从产品1到产品10,把所有的数据都罗列给老板看。
而是把这些数据、按照时间或者空间进行汇总,用一个数字、一个结论来说明结果。
3- 构思数据结构的诀窍
在思考把哪些数据呈现在报告里的时候,有两个重点:
1- 先大致完成框架。
2- 尽量让数字联动。
1)先大致完成框架
意思就是一开始,不要想着把所有的项目、所有的数据都加进来。一方面,这样会耽误表格制作的进度;另一方面,数据一多,我们很容易失去耐心,数据越理越乱。
比如要整理销售数据明细,不要一股脑的,把事业部A、B、C…产品1、2、3,地区1、2、3等等都全部填进来。可以大致的写一下:产品收入、服务收入。
然后再慢慢的填写详细的数据。而且这个详细的数据,最好是另建一个工作表,这样之前的框架表格,可以作为目录,让整个Excel文档的结构,更加的清晰。
2)尽量让数字联动
就是让相关的指标、数据都联动起来。用公式,把这些数据连接起来,这样我们修改任何一个参数,最后的计算结果,都有联动发生变化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22