
入门 | 一文带你了解Python集合与基本的集合运算
一般我们熟悉 Python 中列表、元组及字典等数据结构,但集合可能用得稍微少一点。但集合独特的元素唯一性与 O(1) 时间复杂度的成员检测方法,令其在很多任务中有特别的优势。本文介绍了 Python 集合的常见方法与概念,包括集合元素的操作、基本集合运算以及不可变集等。
了解 Python 集合: 它们是什么,如何创建它们,何时使用它们,什么是内置函数,以及它们与集合论操作的关系
集合、 列表与元组
列表(list)和元组(tuple)是标准的 Python 数据类型,它们将值存储在一个序列中。集合(set)是另一种标准的 Python 数据类型,它也可用于存储值。它们之间主要的区别在于,集合不同于列表或元组,集合中的每一个元素不能出现多次,并且是无序存储的。
Python 集合的优势
由于集合中的元素不能出现多次,这使得集合在很大程度上能够高效地从列表或元组中删除重复值,并执行取并集、交集等常见的的数学操作。
本教程将向你介绍一些关于 Python 集合和集合论的话题:
有了这个提纲,让我们开始吧。
集合初始化
集合是一个拥有确定(唯一)的、不变的的元素,且元素无序的可变的数据组织形式。
你可以使用「set()」操作初始化一个空集。
emptySet = set()
如果要初始化一个带有值的集合,你可以向「set()」传入一个列表。
dataScientist = set(['Python','R','SQL','Git','Tableau','SAS'])
dataEngineer = set(['Python','Java','Scala','Git','SQL','Hadoop'])
如果你观察一下上面的「dataScientist」和「dataEngineer」集合中的变量,就会发现集合中元素值的顺序与添加时的顺序是不同的,这是因为集合是无序的。
集合包含的值也可以通过花括号来初始化。
dataScientist = {'Python','R','SQL','Git','Tableau','SAS'}
dataEngineer = {'Python','Java','Scala','Git','SQL','Hadoop'}
请牢记,花括号只能用于初始化包含值的集合。如下图所示,使用不包含值的花括号是初始化字典(dict)的方法之一,而不是初始化集合的方法。
向集合添加值或删除值
要想向集合中添加值或从中删除值,你首先必须初始化一个集合。
# Initialize setwithvalues
graphicDesigner = {'InDesign','Photoshop','Acrobat','Premiere','Bridge'}
向集合中添加值
你可以使用「add」方法向集合中添加一个值。
graphicDesigner.add('Illustrator')
需要注意的一点是,你只能将不可变的值(例如一个字符串或一个元组)加入到集合中。举例而言,如果你试图将一个列表(list)添加到集合中,系统会返回类型错误「TyprError」。
graphicDesigner.add(['Powerpoint','Blender'])
从集合中删除值
有好几种方法可以从集合中删除一个值:
选项 1:你可以使用「remove」方法从集合中删除一个值。
graphicDesigner.remove('Illustrator')
这种方法的一个缺点是,如果你想要删除一个集合中不存在的值,系统会返回一个键值错误「KeyError」。
选项 2:你可以使用「discard」方法从集合中删除一个值。
graphicDesigner.discard('Premiere')
这种方法相对于「remove」方法的好处是,如果你试图删除一个集合中不存在的值,系统不会返回「KeyError」。如果你熟悉字典(dict)数据结构,你可能会发现这种方法与字典的「get」方法的工作模式相似。
选项 3:你还可以使用「pop」方法从集合中删除并且返回一个任意的值。
graphicDesigner.pop()
需要注意的是,如果集合是空的,该方法会返回一个「KeyError」。
删除集合中所有的值
你可以使用「clear」方法删除集合中所有的值。
graphicDesigner.clear()
在集合上进行迭代
与许多标准 Python 数据类型一样,用户可以在集合(set)上进行迭代。
# Initialize a set
dataScientist = {'Python','R','SQL','Git','Tableau','SAS'}
forskillindataScientist:
print(skill)
如果你仔细观察「dataScientist」集合中打印出来的每一个值,你会发现集合中的值被打印出来的顺序与它们被添加的顺序是不同的。
将集合中的值变为有序
本教程已经向大家强调了集合是无序的。如果你认为你需要以有序的形式从集合中取出值,你可以使用「sorted」函数,它会输出一个有序的列表。
type(sorted(dataScientist))
下面的代码按照字母降序(这里指 Z-A)输出「dataScientist」集合中的值。
sorted(dataScientist, reverse = True)
删除列表中的重复项
首先我们必须强调的是,集合是从列表(list)中删除重复值的最快的方法。为了证明这一点,让我们研究以下两种方法之间的差异。
方法 1:使用集合删除列表中的重复值。
print(list(set([1,2,3,1,7])))
方法 2:使用一个列表推导式(list comprehension)从一个列表中删除重复值。
def remove_duplicates(original):
unique = []
[unique.append(n)forninoriginalifn notinunique]
return(unique)
print(remove_duplicates([1,2,3,1,7]))
性能的差异可以用「timeit」库来测量,这个库允许你对 Python 代码进行计时。下面的代码将每种方法运行了 10,000 次,并且以秒为单位输出了总计时间。
importtimeit
# Approach1: Execution time
print(timeit.timeit('list(set([1, 2, 3, 1, 7]))', number=10000))
# Approach2: Execution time
print(timeit.timeit('remove_duplicates([1, 2, 3, 1, 7])', globals=globals(), number=10000))
对比这两种方法,结果表明,使用集合删除重复值是更加高效的。虽然时间差异看似很小,但实际上在有一个非常大的列表时,能帮你节省很多的时间。
集合运算方法
Python 中常用的集合方法是执行标准的数学运算,例如:求并集、交集、差集以及对称差。下图显示了一些在集合 A 和集合 B 上进行的标准数学运算。每个韦恩(Venn)图中的红色部分是给定集合运算得到的结果。
Python 集合有一些让你能够执行这些数学运算的方法,还有一些给你等价结果的运算符。在研究这些方法之前,让我们首先初始化「dataScientist」和「dataEngineer」这两个集合。
dataScientist = set(['Python','R','SQL','Git','Tableau','SAS'])
dataEngineer = set(['Python','Java','Scala','Git','SQL','Hadoop'])
并集
一个表示为「dataScientist ∪ dataEngineer」的并集,是属于「dataScientist」或「dataEngineer」或同时属于二者元素的集合。你可以使用「union」方法找出两个集合中所有唯一的值。
# set built-infunctionunion
dataScientist.union(dataEngineer)
#EquivalentResult
dataScientist|dataEngineer
求并集操作返回的集合可以被可视化为下面的韦恩(Venn)图中的红色部分。
交集
集合「dataScientist」和「dataEngineer」的交集可以表示为「dataScientist ∩ dataEngineer」,是所有同时属于两个集合的元素集合。
# Intersection operation
dataScientist.intersection(dataEngineer)
# Equivalent Result
dataScientist & dataEngineer
交集运算返回的集合可以被可视化为下面韦恩图中的红色部分。
你可能会发现,你会遇到你想确保两个集合没有共同值的情况。换句话说,你想得到两个交集为空的集合。这两个集合称为互斥集合,你可以使用「isdisjoint」方法测试两个集合是否为互斥。
# Initialize a set
graphicDesigner = {'Illustrator','InDesign','Photoshop'}
# These sets have elementsincommon so it wouldreturnFalse
dataScientist.isdisjoint(dataEngineer)
# These sets have no elementsincommon so it wouldreturnTrue
dataScientist.isdisjoint(graphicDesigner)
你会注意到,在如下韦恩图所示的交集中,「dataScientist」和「graphicDesigner」没有共有的值。
差集
集合「dataScientist」和「dataEngineer」的差集可以表示为「dataScientist dataEngineer」,是所有属于「dataScientist」但不属于「dataEngineer」的元素集合。
# Difference Operation
dataScientist.difference(dataEngineer)
# Equivalent Result
dataScientist - dataEngineer
差集运算返回的结果可以被可视化为以下韦恩图中的红色部分。
对称集
一个「dataScientist」和「dataEngineer」的对称集,表示为「dataScientist △ dataEngineer」,它是所有属于两个集合但不属于二者共有部分的集合。
# Symmetric Difference Operation
dataScientist.symmetric_difference(dataEngineer)
# Equivalent Result
dataScientist ^ dataEngineer
对称集运算返回的结果可以被可视化为下面韦恩图中的红色部分。
集合推导式
你之前可能已经学习过列表推导式(list comprehensions)、字典推导式(dictionary comprehensions)和生成器推导式。这里还有一个集合推导式(Set Comprehension)。集合推导式和它们是很类似的,Python 中的集合推导式可以按照下面的方法构造:
{skillforskillin['SQL','SQL','PYTHON','PYTHON']}
上面的输出为一个包含 2 个值的集合,因为集合中相同的元素不能多次出现。使用集合推导式背后的动机是希望能够用手动进行数学运算的方法在代码中编写和推导式子。
{skillforskillin['GIT','PYTHON','SQL']ifskill notin{'GIT','PYTHON','JAVA'}}
上面的代码与你之前学过的求差集类似,只是看上去有一点点不同。
成员检测
成员检测能够检查某个特定的元素是否被包含在一个序列中,例如字符串、列表、元组或集合。在 Python 中使用集合的一个主要的优点是,它们在 Python 中为成员检测做了深度的优化。例如,对集合做成员检测比对列表做成员检测高效地多。如果你是计算机科班出身,我们可以说,这是因为集合中成员检测的平均时间复杂度是 O(1)的而列表中则是 O(n)。
下面的代码展示了使用列表做成员检测的过程:
# Initialize a list
possibleList = ['Python','R','SQL','Git','Tableau','SAS','Java','Spark','Scala']
# Membership test
'Python'inpossibleList
集合中也可以做类似的操作,只不过集合更加高效。
# Initialize a set
possibleSet = {'Python','R','SQL','Git','Tableau','SAS','Java','Spark','Scala'}
# Membership test
'Python'inpossibleSet
由于「possibleSet」是一个集合,而且「Python」是集合「possibleSet」中的一个元素,这可以被表示为「Python' ∈ possibleSet」如果你有一个不属于集合的值,比如「Fortran」,这可以被表示为「Fortran' ∉ possibleSet」。
子集
实际上集合的成员及成员的组合就是一个子集,让我们首先初始化两个集合。
possibleSkills = {'Python','R','SQL','Git','Tableau','SAS'}
mySkills = {'Python','R'}
如果集合「mySkills」中的每一个值都属于集合「possibleSkills」,那么「mySkills」被称为「possibleSkills」的一个子集,数学上写作「mySkills ⊆ possibleSkills」。你可以使用「issubset」方法检查一个集合是否是另一个集合的子集。
mySkills.issubset(possibleSkills)
因为在这个例子中,这个方法返回的是「True」。在下面的韦恩图中,请注意「mySkills」中的每一个值同时也在集合「possibleSkills」中。
不可变集
我们常常能看到嵌套的列表或元组,它们的元素可能是另一个列表或元组。
# Nested Lists and Tuples
nestedLists = [['the',12], ['to',11], ['of',9], ['and',7], ['that',6]]
nestedTuples = (('the',12), ('to',11), ('of',9), ('and',7), ('that',6))
嵌套集合的问题在于,集合中通常不能包含集合等可变的值。在这种情况下,你可能希望使用一个不可变集(frozenset)。除了值不可以改变,不可变集和可变集是很相似的。你可以使用「frozenset()」创建一个不可变集。
# Initialize a frozenset
immutableSet = frozenset()
如果你使用如下所示的不可变集,就可以创建一个嵌套集合了。
nestedSets = set([frozenset()])
重要的是,你需要记住,不可变集的一个主要的缺点是:由于它们是不可变的,这意味着你不能向其中添加元素或者删除其中的元素。
结语
Python 集合是非常实用的,它能够高效地从列表等数据结构中删除重复的值,并且执行常见的数学运算,例如:求并集、交集。人们经常遇到的一个挑战是:何时使用各种数据类型,例如什么时候使用集合或字典。作者希望本文能展示基本的集合概念,并有利于我们在不同任务中使用不同的数据类型。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29