京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics)之间有什么关系?
本来我以为不需要解释这个问题的,到底数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)有什么区别,但是前几天因为有个学弟问我,我想了想发现我竟然也回答不出来,我在知乎和博客上查了查这个问题,发现还没有人写过比较详细和有说服力的对比和解释。那我根据以前读的书和论文,还有和与导师之间的交流,尝试着说一说这几者的区别吧,毕竟一个好的定义在未来的学习和交流中能够发挥很大的作用。同时补上数据科学和商业分析之间的关系。能力有限,如有疏漏,请包涵和指正。
导论
数据挖掘 (data mining): 有目的地从现有大数据中提取数据的模式(pattern)和模型(model)
当然,数据挖掘会使用大量机器学习的算法,但是其特定的环境和目的和机器学习不太一样。
机器学习(machine learning): 自动地从过往的经验中学习新的知识。
且机器学习目前在实践中最重要的功能便是预测结果。比如机器学习已经学习结束了,现在有一个新的数据集x,需要预测其分类,机器学习算法会根据这个新数据与学习后的“知识”相匹配(实际上,知识指的是学习后的数学模型),然后将这个数据集x分类某类C去。再比较常见的机器学习,比如amazon的推荐系统。
人工智能(AI): 一个广泛的概念,本质是用数据和模型去为现有的问题(existing problems)提供解决方法(solutions).
数据科学(data science)和商业分析(business analytics)的关系?
其实以前,我们是没有数据科学家(data scientist),和数据科学(data science)这个概念的。我们称呼做相关内容的方式更多叫商业分析(business analytics)。
接着DJ Patil和Jeff Hammerbacher在其写的《Building Data Science Teams》,将麦肯锡的“深度分析能力”称为了“数据科学家(data scientists)”。他们在文中提到:
商业分析师(business analyst)看起来太局限了,数据分析师(data anlyst)是他们的竞争者,但是我们还是觉得这个称呼太局限了。....我们认为最好的称呼应该是”数据科学家(data scientist)”,因为这些人需要同时使用数据(data)和科学(science)去创造一些新的东西。
- 专业技术(Technical expertise): 最好的数据科学家需要有关于某些科学学科的深度专业知识(deep expertise)。
- 好奇心(Curiosity): 一个优秀的数据科学家需要有挖掘潜在关系,解决问题和证明假说的强烈好奇心和渴望。
- 讲故事的能力(Storytelling): 能用数据讲一个生动的故事的能力,它能使交流更加有效。
- 聪明(Cleverness): 能够创造性地解决问题的能力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27