
R读写Excel文件中数据的方法
用R语言读写Excel的方法有很多,但每种方法都有让人头疼的地方,如xlsx包的代码复杂,只支持Excel2007;RODBC不易理解,限制太多,程序不稳定,会出各种怪毛病。另存为csv格式的方法倒是比较通用比较稳定,但又存在操作麻烦,无法程序化处理多个文件的问题。提取xml也是个办法,但步骤太多代码太复杂,令人望而生畏。用剪贴板转换也不好,这同样需要人工参与,还不如存为csv。
相比之下,用gdata包来读取,配合WriteXLS写入Excel则可以很好的避开上述麻烦。这两个包都支持Excel2003和Excel2007,运行稳定,代码简单直观,也不需要人工参与。下面用一个例子来说明这两个函数包读写Excel的方法。
目标:
ordersData目录下有多个结构相同的Excel文件,有些是Excel2007格式,有些是Excel2003格式,这些文件存储着历年来的销售订单。请读取这些文件,并统计出每个客户的总销售额,最后将结果写入result.xlsx。下面是2011.xlsx的部分数据:
代码:
library(gdata)
library(WriteXLS)
setwd("E: /ordersData")
fileList<-dir()
orders<-read.xls(fileList[1])
for (file in fileList[2:length(fileList)]){
orders<-rbind(orders,read.xls(file))
}
result<-aggregate(orders[,4], orders[c(2)],sum)
WriteXLS("result","result.xlsx")
result.xlsx中的部分数据如下:
代码解读
1、library(gdata)和library(WriteXLS)这两句代码用来引入第三方函数包,这两个包具有read.xls和WriteXLS函数,可以分别执行读取和写入Excel的动作。
2、fileList<-dir()这句代码列出了目录内的所有文件,之后的for语句则是循环读取文件,并将数据拼合到数据框orders中。如果目录内有其他文件,则应当用通配符来过滤。
3、result<-aggregate(orders[,4], orders[c(2)],sum),这句代码用来执行分组汇总,其中orders[,4]代表汇总列(即Amount),orders[c(2)]代表分组列(即Client)。
4、read.xls和WriteXLS虽然来自于不同的包,但都支持data.frame数据类型,因此可以很好的配合起来。另外,read.xls函数可以自动识别Excel2003和Excel2007格式,使用起来非常方便。
5整段代码都很简洁,初学者可以轻松掌握。
注意事项:
1.版本
gdata和WriteXLS不是R语言自带的库函数,而是第三方包,因此需要额外下载安装。另外,这两个函数包都会用到Perl环境,因此挑选合适版本的Perl尤为重要。经过尝试,当R语言的版本是2.15.0时,gdata最匹配的版本是2.13.3,WriteXLS的版本号则是3.5.0,但用最新的Perl环境与之配合时会出问题,需要使用旧一点的5.14.2版本才行,否则会报以下错误:
Error in xls2sep(xls, sheet, verbose = verbose, ..., method = method, :
Intermediate file 'C:\Users\Thim\AppData\Local\Temp\RtmpMHvLZS\file224060624738.csv' missing!
2.性能
读写小文件没问题,但读写稍大些的文件时会发现gdata和WriteXLS的性能极差(这也许是Perl的原因),比如读一个8列20万行的Excel就需要8到10分钟。如果特别关注性能,可以使用xlsx函数包。当然,这样一来就无法支持Excel2003了。事实上,xlsx的性能并不比gdata强太多,真正要解决性能问题,还是应当将所有的Excel文件都转为2007格式,并解压出里面的xml文件,通过解析xml文件来读取数据。
替代方案
对于R语言中存在的版本冲突和性能问题,我们也可以使用Python、集算器、Perl等语言来解决。和R语言一样,它们都可以读写Excel文件并进行数据计算。下面简单介绍集算器和Python的解决方案。
集算器已将访问EXCEL的功能打入安装包,无需单独下载第三方包,支持读写Excel2003和Excel2007,对更老的版本以及Excel2010也支持。代码如下:
这个方案要比R语言难用多了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29