京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R读写Excel文件中数据的方法
用R语言读写Excel的方法有很多,但每种方法都有让人头疼的地方,如xlsx包的代码复杂,只支持Excel2007;RODBC不易理解,限制太多,程序不稳定,会出各种怪毛病。另存为csv格式的方法倒是比较通用比较稳定,但又存在操作麻烦,无法程序化处理多个文件的问题。提取xml也是个办法,但步骤太多代码太复杂,令人望而生畏。用剪贴板转换也不好,这同样需要人工参与,还不如存为csv。
相比之下,用gdata包来读取,配合WriteXLS写入Excel则可以很好的避开上述麻烦。这两个包都支持Excel2003和Excel2007,运行稳定,代码简单直观,也不需要人工参与。下面用一个例子来说明这两个函数包读写Excel的方法。
目标:
ordersData目录下有多个结构相同的Excel文件,有些是Excel2007格式,有些是Excel2003格式,这些文件存储着历年来的销售订单。请读取这些文件,并统计出每个客户的总销售额,最后将结果写入result.xlsx。下面是2011.xlsx的部分数据:
代码:
library(gdata)
library(WriteXLS)
setwd("E: /ordersData")
fileList<-dir()
orders<-read.xls(fileList[1])
for (file in fileList[2:length(fileList)]){
orders<-rbind(orders,read.xls(file))
}
result<-aggregate(orders[,4], orders[c(2)],sum)
WriteXLS("result","result.xlsx")
result.xlsx中的部分数据如下:
代码解读
1、library(gdata)和library(WriteXLS)这两句代码用来引入第三方函数包,这两个包具有read.xls和WriteXLS函数,可以分别执行读取和写入Excel的动作。
2、fileList<-dir()这句代码列出了目录内的所有文件,之后的for语句则是循环读取文件,并将数据拼合到数据框orders中。如果目录内有其他文件,则应当用通配符来过滤。
3、result<-aggregate(orders[,4], orders[c(2)],sum),这句代码用来执行分组汇总,其中orders[,4]代表汇总列(即Amount),orders[c(2)]代表分组列(即Client)。
4、read.xls和WriteXLS虽然来自于不同的包,但都支持data.frame数据类型,因此可以很好的配合起来。另外,read.xls函数可以自动识别Excel2003和Excel2007格式,使用起来非常方便。
5整段代码都很简洁,初学者可以轻松掌握。
注意事项:
1.版本
gdata和WriteXLS不是R语言自带的库函数,而是第三方包,因此需要额外下载安装。另外,这两个函数包都会用到Perl环境,因此挑选合适版本的Perl尤为重要。经过尝试,当R语言的版本是2.15.0时,gdata最匹配的版本是2.13.3,WriteXLS的版本号则是3.5.0,但用最新的Perl环境与之配合时会出问题,需要使用旧一点的5.14.2版本才行,否则会报以下错误:
Error in xls2sep(xls, sheet, verbose = verbose, ..., method = method, :
Intermediate file 'C:\Users\Thim\AppData\Local\Temp\RtmpMHvLZS\file224060624738.csv' missing!
2.性能
读写小文件没问题,但读写稍大些的文件时会发现gdata和WriteXLS的性能极差(这也许是Perl的原因),比如读一个8列20万行的Excel就需要8到10分钟。如果特别关注性能,可以使用xlsx函数包。当然,这样一来就无法支持Excel2003了。事实上,xlsx的性能并不比gdata强太多,真正要解决性能问题,还是应当将所有的Excel文件都转为2007格式,并解压出里面的xml文件,通过解析xml文件来读取数据。
替代方案
对于R语言中存在的版本冲突和性能问题,我们也可以使用Python、集算器、Perl等语言来解决。和R语言一样,它们都可以读写Excel文件并进行数据计算。下面简单介绍集算器和Python的解决方案。
集算器已将访问EXCEL的功能打入安装包,无需单独下载第三方包,支持读写Excel2003和Excel2007,对更老的版本以及Excel2010也支持。代码如下:

这个方案要比R语言难用多了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21