京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python将多个excel表格合并为一个表格
生活中经常会碰到多个excel表格汇总成一个表格的情况,比如你发放了一份表格让班级所有同学填写,而你负责将大家的结果合并成一个。诸如此类的问题有很多。除了人工将所有表格的内容一个一个复制到汇总表格里,那么如何用Python自动实现这些工作呢~
我不知道有没有其他更方便的合并方法,先用Python实现这个功能,自己用就很方便了。
比如,在文件夹下有如下7个表格(想象一下有100个或更多的表格需要合并)
作为样例,每个表格的内容均为
运行程序,将7个表格合并成了test.xls
打开test.xls,发现成功合并了多个表格的数据到一个表格里
代码运行之前,需要安装Numpy,xlrd,xlwt三个扩展包。话不多说,代码如下
#下面这些变量需要您根据自己的具体情况选择
biaotou=['学号','学生姓名','第一志愿','第二志愿','第三志愿','第四志愿','第五志愿','联系电话','性别','备注']
#在哪里搜索多个表格
filelocation="C:\\Users\\ann\Documents\\Python Scripts\\"
#当前文件夹下搜索的文件名后缀
fileform="xls"
#将合并后的表格存放到的位置
filedestination="C:\\Users\\ann\Documents\\Python Scripts\\"
#合并后的表格命名为file
file="test"
#首先查找默认文件夹下有多少文档需要整合
import glob
from numpy import *
filearray=[]
for filename in glob.glob(filelocation+"*."+fileform):
filearray.append(filename)
#以上是从pythonscripts文件夹下读取所有excel表格,并将所有的名字存储到列表filearray
print("在默认文件夹下有%d个文档哦"%len(filearray))
ge=len(filearray)
matrix = [None]*ge
#实现读写数据
#下面是将所有文件读数据到三维列表cell[][][]中(不包含表头)
import xlrd
for i in range(ge):
fname=filearray[i]
bk=xlrd.open_workbook(fname)
try:
sh=bk.sheet_by_name("Sheet1")
except:
print ("在文件%s中没有找到sheet1,读取文件数据失败,要不你换换表格的名字?" %fname)
nrows=sh.nrows
matrix[i] = [0]*(nrows-1)
ncols=sh.ncols
for m in range(nrows-1):
matrix[i][m] = ["0"]*ncols
for j in range(1,nrows):
for k in range(0,ncols):
matrix[i][j-1][k]=sh.cell(j,k).value
#下面是写数据到新的表格test.xls中哦
import xlwt
filename=xlwt.Workbook()
sheet=filename.add_sheet("hel")
#下面是把表头写上
for i in range(0,len(biaotou)):
sheet.write(0,i,biaotou[i])
#求和前面的文件一共写了多少行
zh=1
for i in range(ge):
for j in range(len(matrix[i])):
for k in range(len(matrix[i][j])):
sheet.write(zh,k,matrix[i][j][k])
zh=zh+1
print("我已经将%d个文件合并成1个文件,并命名为%s.xls.快打开看看正确不?"%(ge,file))
filename.save(filedestination+file+".xls")
我的运行环境是windows7 ,64位。Python版本是3.5.1,32位。
以上就是本文的全部内容,希望对大家的学习有所帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01