京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析或终结传统数据统计方式
这便是大数据分析存在的理由,其是前所未有的。不仅仅是大数据概念的本身提醒着我们,至少我们还可以追溯到21世纪初,“彼时,存储和CPU技术正被百万兆字节的数据所淹没,IT面临着数据的可扩展性危机。”针对大规模和不同的数据集的应用程序中先进的分析技术是前所未有的(如数据挖掘)。这便是大数据分析的出现所带来的划时代的意义了。卢瑟姆说,这是数据可扩展性危机结束的信号。
这给企业带来了前所未有的意义。针对企业所收集的数据进行数据挖掘、数据分析,并在某些情况下作出相关的报告。这就是为什么诸如数据抽样这样的实践方案被视为企业相当务实的必需品。
“你不能把整个数据集都放入到数据挖掘计划中。你必须选择你所需要的数据,必须确保数据的正确性,因为如果你没有投入正确的数据,你的技术可能不奏效。”数据仓库研究院研究员马克?马德森在预测分析研讨会上告诉与会者。
“你可以将您所收集到的数据中的一个很小的比例投入挖掘…概率事件的采样。”他继续说,“但分解会非常罕见,成为非常罕见的事件,使其很难变成样本。”
理想情况下,你要找出所有这些“罕见”事件,他们属于异常现象,如欺诈行为、客户流失和潜在的供应链中断。他们是隐藏在你未分化的数据中的高价值的东西,很难找到。
这些供应商不只是谈论大数据,他们正在谈论大数据结合先进的分析技术,如数据挖掘,统计分析和预测分析。换句话说,他们正在谈论的是大数据分析。
根据数据仓库研究院的研究显示,大数据分析还没有到来;尚未被主流所接受。在数据仓库研究院最近的调查中,超过三分之一(34%)的受访者表示,他们所在的企业结合大数据,实行了某种形式的先进的分析。在大多数情况下,他们仅仅采用非常简便的方法。例如,数据抽样。
“如果你继续采用数据抽样的方法,你可以实际处理所有数据,但数据的科学性本质上是削弱的。”他说。“在Hadoop的世界,没有任何理由不采用商品硬件、真正的智能软件。在过去,我们采用抽样数据,可能还有经济成本方面的考量原因,或者技术达不到的原因。但在今天,这些原因都不复存在。数据采样在过去是最好的实践方案,但我认为它的时代已经过去了。”
“大海捞针的问题不适合采用样本,所以你这样过分强调训练集,可能会导致问题。”负责信息管理咨询的马德森指出,“最终,运行整个数据集要比紧紧按照统计算法和担心样本更容易。技术可以在出现分配挑战时处理数据的问题,并可以访问统计方法。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01