京公网安备 11010802034615号
经营许可证编号:京B2-20210330
机器学习入门之多项式曲线拟合
机器学习和人工智能是最近几年特别火的领域,比如微软小冰、微软cortana、苹果siri、谷歌Now和alphaGo都使用了机器学习,使得他们的产品变得更加智能。
当然除了这些科技巨头,其实我们日常中也可能会使用到人工智能的产品,比如最常见的就是app上的个性化推荐,通过多维度分析用户的个性,给用推荐合适的内容,当然我个人是很讨厌推荐的,基本不点开看。下面我将分为两个部分来阐述多项式曲线拟合。
什么是多项式曲线拟合
如何评估拟合结果
首选我们以一个回归的例子展开阐述,现在假设给定一个训练集。这个训练集由x的N次观测组成,写作 ≡ (x1,…,xN)T,伴随这
对应的t的观测值,记作 ≡ (t1, …, tN )T,图1展示了由N = 10个数据点组成的图像。图1.2中 的输入数据集合
通过选择xn(n = 1, … , N)的值来生成。这些xn均匀分布在区间[0, 1],目标数 据集
的获得方式是:首先计算函数sin(2πx)的对应的值,然后给每个点增加一个小的符合高斯分布的随机噪声。
现在我们输入一个新值x来预测相应的t值。首选我们需要通过训练得出的多项式为y(x,w),y(x,w)是一个多项式:
y(x,w)是曲线多项式,它是一个逼近我们真实曲线的多项式。
在上式y(x,w)中M是多项式的阶数(order),xj表示x的j次幂。多项式系数w0,…,wM整体记作向量w。
注意,虽然多项式函数y(x, w)是x的一个非线性函数,它是系数w的一个线性函数。通过最小化误差函数 (error
function)来衡量了对于任意给定的w值,函数y(x, w)与训练集数据的差别。如图所示:
那么我可以知道误差函数为:
其中1/2是为了方便计算引入的。
我们可以通过选择使得E(w)尽量小的w来解决曲线拟合问题。由于误差函数是系数w的二次函数,因此它关于系数的导数是w的线性函数,所以误差函数的最小值有一个唯一解,记 作w∗,可以用解析的方式求出。最终的多项式函数由函数y(x, w∗)给出。
从图中我们可以看出M=0和M=1拟合效果很差,我们称之为欠拟合,M=3拟合看起来和真实
的曲线差不多,但是当M=9的时候,拟合曲线激烈震荡,我们称之为过拟合。如此看来,曲线拟合的泛化性和M的取值有直接的关系,而M得值我们称之为模型特征个数,比如说房子的价格和房子面积有关系,和房子方向(南北向)有关系,那么面积是房子价格数学模型中的一个特征,房子方向也是一个特征。
为了定量考察泛化性和M之间的关系,我们额外考虑一个测试集,这个测试集由100个数据 点组成,这100个数据点的生成方式与训练集的生成方式完全相同,但是在目标值中包含的随机 噪声的值不同。对于每个不同的M值,我用用根均方(RMS)来表示测试误差:
其中,除以N让我们能够以相同的基础对比不同大小的数据集,平方根确保了E_RMS与目标 变量t使用相同的规模和单位进行度量。下图展示了不同M值和E_RMS的关系:
从中我们可以看到,M=3-8测试误差和训练误差都比较低。能够取得较好的效果。
对已一个给定的模型复杂度,当数据集的规模增加时,过拟合问题变得不那么严重。另一种表
述方式是,数据集规模越大,我们能够用来拟合数据的模型就越复杂(即越灵活)。一个粗略的启发是,数据点的数量不应该小于模型的可调节参数的数量的若干倍(比如5或10)。下图是使用M
= 9的多项式对M = 15个数据点(左图)和N = 100个数据点(右图)通过最小化平方和
误差函数的方法得到的解。我们看到增大数据集的规模会减小过拟合问题。
因此,我们了解到增加数据可以减小过拟合问题。但是我们又引来新的问题,那就是不得不根据可得到的训练集的规模限制参数的数量。也可以说是根据待解决的问题的复杂性来选择模型的复杂性。我们可能期望建立相对复杂和灵活的模型,所以我们经常用来控制过拟合现象的一种技术是正则化(regularization)。这种技术涉及到给误差函数增加一个惩罚项,使得系数不会达到很大的值。这种惩罚项最简单的形式采用所有系数的平方和的形式。
其中∥w∥^2 ≡ wT w = w0^2 + w1^2 + … + wM^2 ,系数λ控制了正则化项相对于平方和误差项的重要性,被称之为正则化系数。通过引入正则化项可以减少过拟合的问题。下图是正则化系数对过拟合影响图:
使用正则化的误差函数,用M = 9的多项式拟合图中的数据集。其中正则化参数λ选择 了两个值,分别对应于ln λ = −18和ln λ = 0。因此引入正则化项也可以减少过拟合问题。
总结
在多项式虚线拟合过程中,我们遇到了两个问题,一个是欠拟合,一个是过拟合,对于欠拟合我们只需要增加参数(或者说特征)是拟合更加好,对于过拟合,我们提到了两种方式来解决,一个是增加数据,通过增加数据的方式增加引入更多的特征从而减少过拟合,另一种是增加正则化项。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05