
机器学习入门之多项式曲线拟合
机器学习和人工智能是最近几年特别火的领域,比如微软小冰、微软cortana、苹果siri、谷歌Now和alphaGo都使用了机器学习,使得他们的产品变得更加智能。
当然除了这些科技巨头,其实我们日常中也可能会使用到人工智能的产品,比如最常见的就是app上的个性化推荐,通过多维度分析用户的个性,给用推荐合适的内容,当然我个人是很讨厌推荐的,基本不点开看。下面我将分为两个部分来阐述多项式曲线拟合。
什么是多项式曲线拟合
如何评估拟合结果
首选我们以一个回归的例子展开阐述,现在假设给定一个训练集。这个训练集由x的N次观测组成,写作 ≡ (x1,…,xN)T,伴随这
对应的t的观测值,记作 ≡ (t1, …, tN )T,图1展示了由N = 10个数据点组成的图像。图1.2中 的输入数据集合
通过选择xn(n = 1, … , N)的值来生成。这些xn均匀分布在区间[0, 1],目标数 据集
的获得方式是:首先计算函数sin(2πx)的对应的值,然后给每个点增加一个小的符合高斯分布的随机噪声。
现在我们输入一个新值x来预测相应的t值。首选我们需要通过训练得出的多项式为y(x,w),y(x,w)是一个多项式:
y(x,w)是曲线多项式,它是一个逼近我们真实曲线的多项式。
在上式y(x,w)中M是多项式的阶数(order),xj表示x的j次幂。多项式系数w0,…,wM整体记作向量w。
注意,虽然多项式函数y(x, w)是x的一个非线性函数,它是系数w的一个线性函数。通过最小化误差函数 (error
function)来衡量了对于任意给定的w值,函数y(x, w)与训练集数据的差别。如图所示:
那么我可以知道误差函数为:
其中1/2是为了方便计算引入的。
我们可以通过选择使得E(w)尽量小的w来解决曲线拟合问题。由于误差函数是系数w的二次函数,因此它关于系数的导数是w的线性函数,所以误差函数的最小值有一个唯一解,记 作w∗,可以用解析的方式求出。最终的多项式函数由函数y(x, w∗)给出。
从图中我们可以看出M=0和M=1拟合效果很差,我们称之为欠拟合,M=3拟合看起来和真实
的曲线差不多,但是当M=9的时候,拟合曲线激烈震荡,我们称之为过拟合。如此看来,曲线拟合的泛化性和M的取值有直接的关系,而M得值我们称之为模型特征个数,比如说房子的价格和房子面积有关系,和房子方向(南北向)有关系,那么面积是房子价格数学模型中的一个特征,房子方向也是一个特征。
为了定量考察泛化性和M之间的关系,我们额外考虑一个测试集,这个测试集由100个数据 点组成,这100个数据点的生成方式与训练集的生成方式完全相同,但是在目标值中包含的随机 噪声的值不同。对于每个不同的M值,我用用根均方(RMS)来表示测试误差:
其中,除以N让我们能够以相同的基础对比不同大小的数据集,平方根确保了E_RMS与目标 变量t使用相同的规模和单位进行度量。下图展示了不同M值和E_RMS的关系:
从中我们可以看到,M=3-8测试误差和训练误差都比较低。能够取得较好的效果。
对已一个给定的模型复杂度,当数据集的规模增加时,过拟合问题变得不那么严重。另一种表
述方式是,数据集规模越大,我们能够用来拟合数据的模型就越复杂(即越灵活)。一个粗略的启发是,数据点的数量不应该小于模型的可调节参数的数量的若干倍(比如5或10)。下图是使用M
= 9的多项式对M = 15个数据点(左图)和N = 100个数据点(右图)通过最小化平方和
误差函数的方法得到的解。我们看到增大数据集的规模会减小过拟合问题。
因此,我们了解到增加数据可以减小过拟合问题。但是我们又引来新的问题,那就是不得不根据可得到的训练集的规模限制参数的数量。也可以说是根据待解决的问题的复杂性来选择模型的复杂性。我们可能期望建立相对复杂和灵活的模型,所以我们经常用来控制过拟合现象的一种技术是正则化(regularization)。这种技术涉及到给误差函数增加一个惩罚项,使得系数不会达到很大的值。这种惩罚项最简单的形式采用所有系数的平方和的形式。
其中∥w∥^2 ≡ wT w = w0^2 + w1^2 + … + wM^2 ,系数λ控制了正则化项相对于平方和误差项的重要性,被称之为正则化系数。通过引入正则化项可以减少过拟合的问题。下图是正则化系数对过拟合影响图:
使用正则化的误差函数,用M = 9的多项式拟合图中的数据集。其中正则化参数λ选择 了两个值,分别对应于ln λ = −18和ln λ = 0。因此引入正则化项也可以减少过拟合问题。
总结
在多项式虚线拟合过程中,我们遇到了两个问题,一个是欠拟合,一个是过拟合,对于欠拟合我们只需要增加参数(或者说特征)是拟合更加好,对于过拟合,我们提到了两种方式来解决,一个是增加数据,通过增加数据的方式增加引入更多的特征从而减少过拟合,另一种是增加正则化项。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-092025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27