京公网安备 11010802034615号
经营许可证编号:京B2-20210330
市场乱象纷纷 区块链何去何从
随着区块链从高冷晦涩的专业术语变身为全民热议的“爆红”风口,众多嗅觉敏锐的商家正在想方设法抢占先机,以各种花式“蹭热点”借机吸金。然而,在区块链一片“繁荣”之下,也隐藏着各种信任危机。各种加密货币利用区块链的投机行为,大肆圈钱,整个市场泡沫化严重。不少公司打着区块链的旗号,行坑蒙拐骗之实。那在这样的市场乱象下,区块链应该“何去何从”?
虚拟货币乱象多 监管加强
区块链的监管在去年迎来了第一个大动作:2017年9月4日,央行等七部委发布了《关于防范代币发行融资风险的公告》。公告指出,国内通过发行代币形式包括首次代币发行(ICO)进行融资的活动大量涌现,投机炒作盛行,涉嫌从事非法金融活动,严重扰乱了经济金融秩序。《公告》要求各类代币发行融资活动应当立即停止,并做出清退等安排。有关部门将依法严肃查处拒不停止的代币发行融资活动以及已完成的代币发行融资项目中的违法违规行为。
今年3月28日,人民银行召开2018年全国货币金银工作电视电话会议,也表示将开展对各类虚拟货币的整顿清理。
ICO风险高 不适合百姓投资
曾一度火热的ICO,到底存在哪些风险?
“有人说ICO与IPO相似,其实它更像是众筹模式,风险非常高。”中国社会科学院金融研究所法与金融研究室副主任尹振涛认为,ICO和IPO之间存在较大差别,IPO需要经过重重审核,而ICO还存在监管空白。与IPO的流程相比,ICO只有一个白皮书就能融资,没有律师审核和券商辅导,白皮书也是项目方自己写就,风险非常高。
尹振涛称,白皮书中虽然写明了应用场景,但当投资者投了钱后,项目方到底怎么使用,就说不准了。“ICO无考核、无监督,缺乏对消费者保护,不适合普通老百姓投资。”
白皮书提示区块链应用风险
4月10日,由工信部下属中国信通院云计算和大数据所与京东金融在京联合发布的《区块链金融应用白皮书》,对区块链应用的风险进行了重要提示,包括相关技术不成熟限制了应用范围、监管体系不完善导致行业乱象丛生、区块链被过度消费导致的泡沫等。这些风险应该引起行业和监管部门的高度重视。
对于如何推进区块链的下一步应用,白皮书建议,一是在急用先行、大胆试错的思路指引下,加快行业标准化的推行;二是优先考虑痛点明显、增量显著、发展迅速的精品业务落地,试点成功后再逐步扩大;三是组织并扩大产业联盟,促进产业成熟。
区块链技术有哪些不足?
“区块链技术是把双刃剑。”天网防火墙前主工程师、重庆用维通信技术有限公司CTO刘大林自2013年开始接触比特币并研究相关代码,在区块链底层构架和性能优化方面有很深的研究。在他看来,区块链使用的IPFS协议是一个基于区块链的点对点超媒体协议,但存在不易监管等问题。另外,在数字货币方面新一代的数字货币交易隐藏深、追踪难,让监管更加困难。
如何防范区块链应用乱象?
五花八门的区块链应用、天价区块链培训、披区块链的皮行坑蒙拐骗的项目……区块链应用乱象的源头究竟在哪儿?
尹振涛认为,ICO乱象归根结底是创业者急于获取资金启动项目。按照以前的流程,创业者获得融资的时间很长,但用ICO获取融资速度却很快。“或许可以在资金上给予创业者更多的帮助。”
WorkFace中国创业者社群创始人潘剑峰表示,如果不是创业市场渴求资金,得不到金融市场的支持,何来那么多创业者如此积极地扑进ICO市场呢?潘剑峰建议,帮助正规的创业者找到合法的资金渠道,让资金成本更合理,更高效地支持创业者,或许能抑制ICO乱象。
区块链未来如何发展?
对于区块链技术的发展,潘剑峰说:“未来的生意都会基于数据,基于数据的所有生意都会从现在基于互联网的技术结构向基于区块链的技术结构转移。”
“其实不管哪个领域,培训的投资都是最小的,而赚钱是最快的。”荣格财经发起人、总编辑赵洪伟认为,区块链覆盖力很强,如果在细分领域抢占先机,可能会很容易吸引到这个行业里传统企业的大佬,然后再与他们进行合作,就能赚到区块链培训的黄金。同时,随着区块链技术应用的蓬勃发展,必然导致大量传统企业的涌入,造成人才的大量短缺。此时如果有外包服务公司提供技术或理念服务,则将大大降低企业进入新行业的试错成本。此外,区块链时代还有很多可以赚钱的黄金点未被发掘,值得企业去探索。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07