
市场乱象纷纷 区块链何去何从
随着区块链从高冷晦涩的专业术语变身为全民热议的“爆红”风口,众多嗅觉敏锐的商家正在想方设法抢占先机,以各种花式“蹭热点”借机吸金。然而,在区块链一片“繁荣”之下,也隐藏着各种信任危机。各种加密货币利用区块链的投机行为,大肆圈钱,整个市场泡沫化严重。不少公司打着区块链的旗号,行坑蒙拐骗之实。那在这样的市场乱象下,区块链应该“何去何从”?
虚拟货币乱象多 监管加强
区块链的监管在去年迎来了第一个大动作:2017年9月4日,央行等七部委发布了《关于防范代币发行融资风险的公告》。公告指出,国内通过发行代币形式包括首次代币发行(ICO)进行融资的活动大量涌现,投机炒作盛行,涉嫌从事非法金融活动,严重扰乱了经济金融秩序。《公告》要求各类代币发行融资活动应当立即停止,并做出清退等安排。有关部门将依法严肃查处拒不停止的代币发行融资活动以及已完成的代币发行融资项目中的违法违规行为。
今年3月28日,人民银行召开2018年全国货币金银工作电视电话会议,也表示将开展对各类虚拟货币的整顿清理。
ICO风险高 不适合百姓投资
曾一度火热的ICO,到底存在哪些风险?
“有人说ICO与IPO相似,其实它更像是众筹模式,风险非常高。”中国社会科学院金融研究所法与金融研究室副主任尹振涛认为,ICO和IPO之间存在较大差别,IPO需要经过重重审核,而ICO还存在监管空白。与IPO的流程相比,ICO只有一个白皮书就能融资,没有律师审核和券商辅导,白皮书也是项目方自己写就,风险非常高。
尹振涛称,白皮书中虽然写明了应用场景,但当投资者投了钱后,项目方到底怎么使用,就说不准了。“ICO无考核、无监督,缺乏对消费者保护,不适合普通老百姓投资。”
白皮书提示区块链应用风险
4月10日,由工信部下属中国信通院云计算和大数据所与京东金融在京联合发布的《区块链金融应用白皮书》,对区块链应用的风险进行了重要提示,包括相关技术不成熟限制了应用范围、监管体系不完善导致行业乱象丛生、区块链被过度消费导致的泡沫等。这些风险应该引起行业和监管部门的高度重视。
对于如何推进区块链的下一步应用,白皮书建议,一是在急用先行、大胆试错的思路指引下,加快行业标准化的推行;二是优先考虑痛点明显、增量显著、发展迅速的精品业务落地,试点成功后再逐步扩大;三是组织并扩大产业联盟,促进产业成熟。
区块链技术有哪些不足?
“区块链技术是把双刃剑。”天网防火墙前主工程师、重庆用维通信技术有限公司CTO刘大林自2013年开始接触比特币并研究相关代码,在区块链底层构架和性能优化方面有很深的研究。在他看来,区块链使用的IPFS协议是一个基于区块链的点对点超媒体协议,但存在不易监管等问题。另外,在数字货币方面新一代的数字货币交易隐藏深、追踪难,让监管更加困难。
如何防范区块链应用乱象?
五花八门的区块链应用、天价区块链培训、披区块链的皮行坑蒙拐骗的项目……区块链应用乱象的源头究竟在哪儿?
尹振涛认为,ICO乱象归根结底是创业者急于获取资金启动项目。按照以前的流程,创业者获得融资的时间很长,但用ICO获取融资速度却很快。“或许可以在资金上给予创业者更多的帮助。”
WorkFace中国创业者社群创始人潘剑峰表示,如果不是创业市场渴求资金,得不到金融市场的支持,何来那么多创业者如此积极地扑进ICO市场呢?潘剑峰建议,帮助正规的创业者找到合法的资金渠道,让资金成本更合理,更高效地支持创业者,或许能抑制ICO乱象。
区块链未来如何发展?
对于区块链技术的发展,潘剑峰说:“未来的生意都会基于数据,基于数据的所有生意都会从现在基于互联网的技术结构向基于区块链的技术结构转移。”
“其实不管哪个领域,培训的投资都是最小的,而赚钱是最快的。”荣格财经发起人、总编辑赵洪伟认为,区块链覆盖力很强,如果在细分领域抢占先机,可能会很容易吸引到这个行业里传统企业的大佬,然后再与他们进行合作,就能赚到区块链培训的黄金。同时,随着区块链技术应用的蓬勃发展,必然导致大量传统企业的涌入,造成人才的大量短缺。此时如果有外包服务公司提供技术或理念服务,则将大大降低企业进入新行业的试错成本。此外,区块链时代还有很多可以赚钱的黄金点未被发掘,值得企业去探索。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07