
市场乱象纷纷 区块链何去何从
随着区块链从高冷晦涩的专业术语变身为全民热议的“爆红”风口,众多嗅觉敏锐的商家正在想方设法抢占先机,以各种花式“蹭热点”借机吸金。然而,在区块链一片“繁荣”之下,也隐藏着各种信任危机。各种加密货币利用区块链的投机行为,大肆圈钱,整个市场泡沫化严重。不少公司打着区块链的旗号,行坑蒙拐骗之实。那在这样的市场乱象下,区块链应该“何去何从”?
虚拟货币乱象多 监管加强
区块链的监管在去年迎来了第一个大动作:2017年9月4日,央行等七部委发布了《关于防范代币发行融资风险的公告》。公告指出,国内通过发行代币形式包括首次代币发行(ICO)进行融资的活动大量涌现,投机炒作盛行,涉嫌从事非法金融活动,严重扰乱了经济金融秩序。《公告》要求各类代币发行融资活动应当立即停止,并做出清退等安排。有关部门将依法严肃查处拒不停止的代币发行融资活动以及已完成的代币发行融资项目中的违法违规行为。
今年3月28日,人民银行召开2018年全国货币金银工作电视电话会议,也表示将开展对各类虚拟货币的整顿清理。
ICO风险高 不适合百姓投资
曾一度火热的ICO,到底存在哪些风险?
“有人说ICO与IPO相似,其实它更像是众筹模式,风险非常高。”中国社会科学院金融研究所法与金融研究室副主任尹振涛认为,ICO和IPO之间存在较大差别,IPO需要经过重重审核,而ICO还存在监管空白。与IPO的流程相比,ICO只有一个白皮书就能融资,没有律师审核和券商辅导,白皮书也是项目方自己写就,风险非常高。
尹振涛称,白皮书中虽然写明了应用场景,但当投资者投了钱后,项目方到底怎么使用,就说不准了。“ICO无考核、无监督,缺乏对消费者保护,不适合普通老百姓投资。”
白皮书提示区块链应用风险
4月10日,由工信部下属中国信通院云计算和大数据所与京东金融在京联合发布的《区块链金融应用白皮书》,对区块链应用的风险进行了重要提示,包括相关技术不成熟限制了应用范围、监管体系不完善导致行业乱象丛生、区块链被过度消费导致的泡沫等。这些风险应该引起行业和监管部门的高度重视。
对于如何推进区块链的下一步应用,白皮书建议,一是在急用先行、大胆试错的思路指引下,加快行业标准化的推行;二是优先考虑痛点明显、增量显著、发展迅速的精品业务落地,试点成功后再逐步扩大;三是组织并扩大产业联盟,促进产业成熟。
区块链技术有哪些不足?
“区块链技术是把双刃剑。”天网防火墙前主工程师、重庆用维通信技术有限公司CTO刘大林自2013年开始接触比特币并研究相关代码,在区块链底层构架和性能优化方面有很深的研究。在他看来,区块链使用的IPFS协议是一个基于区块链的点对点超媒体协议,但存在不易监管等问题。另外,在数字货币方面新一代的数字货币交易隐藏深、追踪难,让监管更加困难。
如何防范区块链应用乱象?
五花八门的区块链应用、天价区块链培训、披区块链的皮行坑蒙拐骗的项目……区块链应用乱象的源头究竟在哪儿?
尹振涛认为,ICO乱象归根结底是创业者急于获取资金启动项目。按照以前的流程,创业者获得融资的时间很长,但用ICO获取融资速度却很快。“或许可以在资金上给予创业者更多的帮助。”
WorkFace中国创业者社群创始人潘剑峰表示,如果不是创业市场渴求资金,得不到金融市场的支持,何来那么多创业者如此积极地扑进ICO市场呢?潘剑峰建议,帮助正规的创业者找到合法的资金渠道,让资金成本更合理,更高效地支持创业者,或许能抑制ICO乱象。
区块链未来如何发展?
对于区块链技术的发展,潘剑峰说:“未来的生意都会基于数据,基于数据的所有生意都会从现在基于互联网的技术结构向基于区块链的技术结构转移。”
“其实不管哪个领域,培训的投资都是最小的,而赚钱是最快的。”荣格财经发起人、总编辑赵洪伟认为,区块链覆盖力很强,如果在细分领域抢占先机,可能会很容易吸引到这个行业里传统企业的大佬,然后再与他们进行合作,就能赚到区块链培训的黄金。同时,随着区块链技术应用的蓬勃发展,必然导致大量传统企业的涌入,造成人才的大量短缺。此时如果有外包服务公司提供技术或理念服务,则将大大降低企业进入新行业的试错成本。此外,区块链时代还有很多可以赚钱的黄金点未被发掘,值得企业去探索。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19