京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“慢数据”挖掘的价值何在_数据分析师
1概述,“慢数据”挖掘的价值何在
经常看电影的朋友们可能不会陌生,在好莱坞的很多灾难电影中都上演疾病肆虐的镜头,其实电影背后的现实生活当中我们也会经历这样的过程,面对流行疾病的爆发,我们现在的医疗预警措施已经进步了很多。

不再恐惧疾病 揭秘“慢数据”带来了什么
随着大数据技术的不断发展,基于数据挖掘、数据分析等技术的普及,对于流行疾病的预测已经开始了非常广泛的应用,我们常说的数据挖掘一般是指对硬件监测所收集来的数据进行时间、地点、用户信息、使用习惯、发展趋势等等很多方面的全面分析。那么“慢数据”挖掘和分析你又了解多少呢?它对于我们未来的生活又有何作用呢?本期我们就来聊聊。
“慢数据”挖掘的价值何在
我们都知道,现在我们经常提及的大数据是指信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。现在国内外已经有很多企业都开始进行大数据分析技术的开发和研究工作,企业基于云平台技术对数据进行更为广泛的收集和分析,从而与不同算法合为一体。
通过大数据引擎开发出来之后,如果已经有大数据的行业,那么用户可以将自己的数据导入到这个数据平台进行综合性处理,平台成了各行业海量数据的汇集、整合、处理、分析的枢纽中心。
我们现在的用户每天所产生的海量数据当中有很多其实是没有价值的,这些数据没有显示出足够的威力。纵观相关行业里,医疗行业尤其是流行病的疾控和预警是表现最为明显、也是最需要关注的数据源,因为健康和每个人、每个家庭、每个城市、每个国家都息息相关。
举个例子,我们每天起床后都会刷牙,如果能够通过牙刷等人工智能设备收集唾液的一些样本,通过体温等指标这样的“慢数据”分析,所得结果才具有医学和参考价值。医学领域“生理数据”比“物理数据”更有实用价值。>>
大数据下的疾病预警不容小视
随着现在医疗水平的不断提升,也许我们会认为大规模的流行病爆发也许离我们很远,这种松懈的想法其实是很危险的,对于流行疾病来说,防患于未然是非常有必要的。有数据显示,在全球,随着人口增长和日益加快的城市化进程致使数亿人居住环境卫生恶化,疾病随着人口的增长以及人们向拥挤的城市迁移而肆虐。
由于人口众多,随着经济的发展,人员跨区域流动性加大、城市化加剧、城市人口密度增加、结构变化等都加剧了流行病发生、传播、蔓延的几率及传播速度。
基于大数据的“慢数据”分析我们可以对用户所产生的海量“慢数据”进行收集,在基于海量使用用户搜索、社交app、LBS等产生的数据,通过对用户人口统计学等数据的分析,结合原有疾病监控系统中的流行疾病法定报告数据、流行疾病病例,结合疾病、环境数据,才能够及时发现并绘制出流行病风险地图。
国外是如何进行大数据疾病防控的
曾经有一本非常著名的大数据书籍就曾记载,谷歌利用大数据分析技术就成功预测了2009年爆发的新流行疾病,通过对传统预警繁琐过程的改进,通过建立大数据分析平台,就从根本上完美的解决了这个问题,通过观察人们在网上的搜索记录来完成这个预测,保存了多年来所有的搜索记录,而且每天都会收到来自全球超过30亿条的搜索指令,所有的这些所产生的数据对于疾病防控来说都是十分有价值的。
通过对海量数据进行分析,获得有巨大价值的产品和服务,或深刻的洞见。这就是大数据的力量和魅力。随着我们现在一些国内厂商对于大数据技术的不断重视,很多大数据战略模式已经诞生,相信基于大数据分析的未来疾病防控将会变得更加迅速、更加有效,百姓生活的也更踏实。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01