
在Python中使用lambda高效操作列表的教程
这篇文章主要介绍了在Python中使用lambda高效操作列表的教程,结合了包括map、filter、reduce、sorted等函数,需要的朋友可以参考下
介绍
lambda
Python用于支持将函数赋值给变量的一个操作符 默认是返回的,所以不用再加return关键字,不然会报错
result = lambda x: x * x
result(2) # return 4
map()/filter()/reduce()
需要两个参数,第一个是一个处理函数,第二个是一个序列(list,tuple,dict)
map()
将序列中的元素通过处理函数处理后返回一个新的列表
filter()
将序列中的元素通过函数过滤后返回一个新的列表
reduce()
将序列中的元素通过一个二元函数处理返回一个结果
将上面三个函数和lambda结合使用
li = [1, 2, 3, 4, 5]
# 序列中的每个元素加1
map(lambda x: x+1, li) # [2,3,4,5,6]
# 返回序列中的偶数
filter(lambda x: x % 2 == 0, li) # [2, 4]
# 返回所有元素相乘的结果
reduce(lambda x, y: x * y, li) # 1*2*3*4*5 = 120
sorted() 结合lambda对列表进行排序
sorted 用于列表的排序,比列表自带的更加智能 有两个列表,每个列表中都有一个字典([{},{}])要求将两个这样的列表合并后按照时间排序, 两个列表中的时间为了能够通过json输出已经由时间格式转变为字符串格式.字段名为 sort_time 现在将他们按照倒序排列
sorted 的用法
sorted(iterable, cmp=None, key=None, reverse=False) --> new sorted list terable:是可迭代类型; cmp:用于比较的函数,比较什么由key决定,有默认值,迭代集合中的一项; key:用列表元素的某个属性和函数进行作为关键字,有默认值,迭代集合中的一项; reverse:排序规则. reverse = True 或者 reverse = False,有默认值。 * 返回值:是一个经过排序的可迭代类型,与iterable一样。
sorted()结合lambda对可迭代类型用sort_time排序
sorted(data, key=lambda d: d['sort_time'], reverse=True)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23