
让你挂掉数据科学家面试的4宗罪
数据科学家”可能是本世纪最性感的工作。但雇用一个数据科学家却不是如此。
对于立志在数据科学领域有一定作为的新手来说,“数据科学家”可不仅仅是一个光彩照人的代名词。
新手需要不断的学习,才能成长为一名具有创造力的数据科学家。
另外,作为小白的你可能急切想得到一份数据科学的职位。
但你在面试的时候,面试官让你“挂掉”的原因可能有数百种。
总的来说,可以分为四种。为了更好的理解这四项失误,文摘菌将此类比狙击手的训练。
让我们开始吧......那么,让数据科学家面试失败被拒的4宗罪是什么?
用机器学习流行语来修饰你的简历
与任何工作一样,用行业术语来刻画个人简历可能会很吸引人的。数据科学领域也不乏各种流行用语。也许这种表面功夫可能能提高你的简历通过人力资源自动拣选的机会,但往往更可能会事与愿违。
很多时候,简历上声称的高级分析技能实际上只是会用excel数据透视表、SQL查询或Google分析。就算不管因此而在面试上浪费掉的时间,这种拙劣的策略也会导致求职者彻底失败或者丧失信心。
对于一个有抱负的狙击手来说,这种行为无异于光说不做,穿着军服拿着枪,却不去训练自己成为一名士兵。尽管这听起来很荒谬,但是做一只披着狼皮的羊一点意思也没有。
建模少而只顾程序库调用
许多求职者都声称他们如何熟悉建模,但实际上他们都只是在努力解释模型函数的调用和参数。其实在问到诸如某项技术是做什么的之前,比如Random Forest,还有一个更重要的问题就是为什么你会首先选择它。
说实在的,一个模型是可以通过单行库调用来运行。但是,机器学习绝不仅仅是这样。比如说,人们需要明白什么情况下逻辑回归比SVM更合适。又或者,什么时候简单的外推法会比ARIMA或Holt-Winters等预测技术更强大。
一个好的狙击手需要做的不仅仅是瞄准和射击。其实,射击训练只占狙击学校课程的20%。真正的狙击手需要其他细节技能,比如耐心、纪律和好的观察评估目标距离的能力。
缺乏数据分析必不可少的基础知识
尽管对机器学习技术的直观理解可以成为求职者的强项,但他们往往在这方面反而做得不足。他们常常忽视投入实践培训以掌握更多基础技能,如统计和探索性数据分析。
建模仅占整个数据分析生命周期的一小部分。在任何成功的机器学习(ML)项目中,超过50%的时间都是花在准备数据,讨论和寻找方法上。还有大约25%的时间花在之后的模型解释和建议上。
即使求职者都标榜他们的分析项目有90%的准确率,但是如果你看到他们在解释p值(当原假设为真时所得到的样本观察结果或更极端结果出现的概率)是什么,和为什么模型需要置信区间时那种越说越没自信的表情,你就会觉得这对他们来说简直是一场悲剧。
就像狙击手首先需要成为一名伟大的步兵一样,牢牢掌握基础知识在所有学科中都是至关重要的。如果一个人在战斗中不会修枪或是开枪走火的话,那么他枪法再好又有什么用?
不懂应用分析技术来解决业务问题
显然要在我们刚才讨论过的各方面都做到很好已经是一项艰巨的任务。但是我们还没讲到整个链条中的关键环节,而这正是大多数面试没有了下文的原因。
数据科学家的最终使命是解决业务问题,而不仅仅是分析数据或建立一个伟大的模型,这是数据分析的终极目标。人们需要在用分析工具处理任何数据之前就界定好正确的业务问题,并制定解决问题的一系列步骤。
当求职者被问及企业如何解决客户流失问题时,如果他急于用数据分析来解释,或者更有甚者,单靠模型名称来胡乱预测客户流失,那么面试就没法继续下去了。较好的方式是从探讨客户注册的原因以及客户的期望和影响业务的核心因素是什么开始。
这就好比一个专家级别的狙击手无所不知,但却不能隐蔽自己或找到真正需要除掉的目标。这样的人真的很危险,因为猪队友比神对手更具风险性。
总结:对数据科学的追求
让你挂掉数据科学家面试的4宗罪
总之,我们对数据科学的追求必须有一定的规则:
通过问题重构和一系列步骤推演来应对挑战,解决业务问题;
把基础知识技能应用于统计学和探索性数据分析中,以获得数据感并代分析方法;
选择一系列分析技术或机器学习模型,然后为业务用户处理和解释分析结果;
并通过正确定位自己的专业知识来展现这些技能,这是数据科学家所必备的。
好吧,愿你能消除这些缺陷,并在数据分析职场中获得一席之地!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14