
让你挂掉数据科学家面试的4宗罪
数据科学家”可能是本世纪最性感的工作。但雇用一个数据科学家却不是如此。
对于立志在数据科学领域有一定作为的新手来说,“数据科学家”可不仅仅是一个光彩照人的代名词。
新手需要不断的学习,才能成长为一名具有创造力的数据科学家。
另外,作为小白的你可能急切想得到一份数据科学的职位。
但你在面试的时候,面试官让你“挂掉”的原因可能有数百种。
总的来说,可以分为四种。为了更好的理解这四项失误,文摘菌将此类比狙击手的训练。
让我们开始吧......那么,让数据科学家面试失败被拒的4宗罪是什么?
用机器学习流行语来修饰你的简历
与任何工作一样,用行业术语来刻画个人简历可能会很吸引人的。数据科学领域也不乏各种流行用语。也许这种表面功夫可能能提高你的简历通过人力资源自动拣选的机会,但往往更可能会事与愿违。
很多时候,简历上声称的高级分析技能实际上只是会用excel数据透视表、SQL查询或Google分析。就算不管因此而在面试上浪费掉的时间,这种拙劣的策略也会导致求职者彻底失败或者丧失信心。
对于一个有抱负的狙击手来说,这种行为无异于光说不做,穿着军服拿着枪,却不去训练自己成为一名士兵。尽管这听起来很荒谬,但是做一只披着狼皮的羊一点意思也没有。
建模少而只顾程序库调用
许多求职者都声称他们如何熟悉建模,但实际上他们都只是在努力解释模型函数的调用和参数。其实在问到诸如某项技术是做什么的之前,比如Random Forest,还有一个更重要的问题就是为什么你会首先选择它。
说实在的,一个模型是可以通过单行库调用来运行。但是,机器学习绝不仅仅是这样。比如说,人们需要明白什么情况下逻辑回归比SVM更合适。又或者,什么时候简单的外推法会比ARIMA或Holt-Winters等预测技术更强大。
一个好的狙击手需要做的不仅仅是瞄准和射击。其实,射击训练只占狙击学校课程的20%。真正的狙击手需要其他细节技能,比如耐心、纪律和好的观察评估目标距离的能力。
缺乏数据分析必不可少的基础知识
尽管对机器学习技术的直观理解可以成为求职者的强项,但他们往往在这方面反而做得不足。他们常常忽视投入实践培训以掌握更多基础技能,如统计和探索性数据分析。
建模仅占整个数据分析生命周期的一小部分。在任何成功的机器学习(ML)项目中,超过50%的时间都是花在准备数据,讨论和寻找方法上。还有大约25%的时间花在之后的模型解释和建议上。
即使求职者都标榜他们的分析项目有90%的准确率,但是如果你看到他们在解释p值(当原假设为真时所得到的样本观察结果或更极端结果出现的概率)是什么,和为什么模型需要置信区间时那种越说越没自信的表情,你就会觉得这对他们来说简直是一场悲剧。
就像狙击手首先需要成为一名伟大的步兵一样,牢牢掌握基础知识在所有学科中都是至关重要的。如果一个人在战斗中不会修枪或是开枪走火的话,那么他枪法再好又有什么用?
不懂应用分析技术来解决业务问题
显然要在我们刚才讨论过的各方面都做到很好已经是一项艰巨的任务。但是我们还没讲到整个链条中的关键环节,而这正是大多数面试没有了下文的原因。
数据科学家的最终使命是解决业务问题,而不仅仅是分析数据或建立一个伟大的模型,这是数据分析的终极目标。人们需要在用分析工具处理任何数据之前就界定好正确的业务问题,并制定解决问题的一系列步骤。
当求职者被问及企业如何解决客户流失问题时,如果他急于用数据分析来解释,或者更有甚者,单靠模型名称来胡乱预测客户流失,那么面试就没法继续下去了。较好的方式是从探讨客户注册的原因以及客户的期望和影响业务的核心因素是什么开始。
这就好比一个专家级别的狙击手无所不知,但却不能隐蔽自己或找到真正需要除掉的目标。这样的人真的很危险,因为猪队友比神对手更具风险性。
总结:对数据科学的追求
让你挂掉数据科学家面试的4宗罪
总之,我们对数据科学的追求必须有一定的规则:
通过问题重构和一系列步骤推演来应对挑战,解决业务问题;
把基础知识技能应用于统计学和探索性数据分析中,以获得数据感并代分析方法;
选择一系列分析技术或机器学习模型,然后为业务用户处理和解释分析结果;
并通过正确定位自己的专业知识来展现这些技能,这是数据科学家所必备的。
好吧,愿你能消除这些缺陷,并在数据分析职场中获得一席之地!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28