京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代如何提升挖掘能力_数据分析师
第1页:如何提升平台的挖掘能力
大数据如今备受关注,如何将企业中的数据挖掘出最大的价值是用户最关注的事情,目前,针对大数据领域的分析、挖掘的工具很多,但真正在市场上能够叫的出名气的却屈指可数,这是为何呢?更多的时候是很多厂商各自为政,很难让企业数据发挥最大的作用。
在大数据时代,如何提升数据的挖掘能力呢?要想提升大数据的挖掘能力,硬件系统需要提升其自身的计算性能,超强的计算能力无疑有助于企业快速的挖掘出数据中的价值,也从而让数据能够快速的反应到企业决策中去。
目前,要提升平台的计算能力,无疑可以从几个方面入手。处理器、内存以及存储,这三方面的计算能力直接影响到数据的挖掘价值。
首先我们来看下处理器,谈到处理器我们肯定会想到英特尔,在摩尔定律的推进下,英特尔的计算平台一直保持着较快的更新速度,每年我们都会看到新的计算平台的出现,英特尔在推动大数据方面无疑发挥着重要的作用。
在内存和存储方面,我们也看到这方面的发展也是非常迅速的,如今,计算平台对内存的支持越来越大,而从存储方面来看,闪存的出现无疑也加快了这方面的计算速度。
但值得我们注意的是,如今,在处理器、内存和存储方面,通过硬件的提升来促使大数据挖掘的能力已经达到了一个非常高的水平。那么要想提升挖掘的能力,从软件方面入手已经成为各大企业公认的事情。那么软件方面如何进行呢?
第2页:英特尔与cloudera合作助力本土发展
对于如今的it市场,很难再出现一家独大的情况了,当前的it市场更多的是合作共赢,为了提升大数据方面的挖掘能力,推动中国大数据技术和解决方案的开发进程及应用普及度,并帮助本地企业通过大数据处理和分析加速业务洞察的获取效率,英特尔公司携手企业数据分析管理软件的领导者cloudera,共同迎接大数据方面的挑战。
cloudera凭借其领先的、基于开放架构平台的hadoop技术,已被全球多个行业的领先企业及顶尖公共部门所认可,得以为他们的核心业务应用提供大数据解决方案。
英特尔重视大数据挖掘
继今年3月投资cloudera,英特尔与其建立了广泛战略技术和商业合作关系,英特尔与cloudera在大数据领域的合作也将进一步延伸至中国市场,双方将基于英特尔公司在中国大数据产业和市场中获取的丰富实践经验及全面优化的创新技术,为中国企业用户提供更多领先的、量身定制的产品和服务。
随着中国交通、电信、金融、医疗等行业领域的飞速发展,越来越多的企业需要快速、甚至是实时的大数据分析。大数据在中国企业转型与变革中发挥的作用愈发现显著,而hadoop作为大数据应用中的主流技术,也逐渐成为企业应用的核心。英特尔拥有雄厚硬件实力和本地经验的合作伙伴,使得cloudera有更多机会为中国企业用户提供更高效的大数据解决方案和相关支持。
通过与cloudera的紧密合作,借助软件层面的优化与架构的创新,基于英特尔架构开放硬件平台的大数据解决方案将能够实现计算与存储的深度融合及无限扩容,从根本上解决资源调配不均等性能瓶颈,充分释放和利用英特尔现有和未来将发布的数据中心计算、存储及网络平台和技术的潜能,从而为用户带来具备更高性能和能效,并且高度灵活易用的大数据解决方案。本文:CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01