京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python实现对excel进行数据剔除操作实例
学习Python的过程中,我们会遇到Excel的各种问题。下面这篇文章主要给大家介绍了关于python对excel进行数据剔除操作的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧。

Python解析Excel时需要安装两个包,分别是xlrd(读excel)和xlwt(写excel),安装方法如下:
pip install xlrd
pip install xlwt
需求分析:
判断excel2表中的某个唯一字段是否满足条件,如果满足条件,就在excel1中进行查询,若存在excel中,就将该数据进行剔除。
python脚本的实现:
from __future__ import division
import pandas as pd
#指定文件的路径
imputfile= 'C:\\Users\\Administrator\\Desktop\\excel1.xlsx' #原始表excel1
imputfile1= 'C:\\Users\\Administrator\\Desktop\\excel2.xls' #excel2
outputfile = 'C:\\Users\\Administrator\\Desktop\\result.xlsx' #结果
#读取excel1的数据到data
data = pd.read_excel(imputfile,encoding='utf-8')
ex_list = list(data.iloc[:,1]) #将需要比对的字段转换为list形式
#读取excel2的数据到remove_data
remove_data = pd.read_excel(imputfile1,encoding='utf-8')
#找出excel2中需要筛选的字段满足的条件。如我这边需要满足的条件是:remove_data.iloc[i,7] =='成功'
remove_phone=[]
for i in range(0,len(remove_data)):
if remove_data.iloc[i,7] =='成功':
phone = remove_data.iloc[i,3]
remove_phone.append(phone)
#删除满足条件数据
for i in range(0,len(remove_phone)):
ex_list.remove(remove_phone[i])
#将剔除后的数据赋值到new_data
new_data=data[data.iloc[:,1].isin(ex_list)]
#导出excel
new_data.to_excel(outputfile)
当然,像这种对excel的剔除数据也可以直接再excel中实现,比如我们先对excel2和excel1都按某一唯一字段进行排序,然后将excel2中需要筛选的结果复制在Excel1中,直接在excel1中根据该字段进行排序。
注意:但是这种方法有一个缺陷是,如果Excel2中的数据并不是完整的,那排序下来也会和excel1不一致。
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16