京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代 需要一点想象力
今天在业内鼓吹大数据时代即将到来的时候,得到最多的仍然是同样两类反应。虚无派说大数据云山雾罩,看不出有什么钱途。停滞派说大数据有什么新奇,老子的数据很大,挖掘技术很高。我想,今后几年的产业发展又将证明这两类说法的无知与荒谬。

一些不肯认真读点想点东西的人,一看到大数据这个词,就望文生义地想到数据要大,却忘记了大数据的其他基本特性,需要反复加以提醒。
大数据的特性之一是数据的完整性和综合性。很多业内朋友一谈起大数据,就习惯性地盘点起自己那点存货,或者那些可以直接从自身服务中可以获取的东西。考虑到目前互联网的发展还在非常初级的阶段,现有网络服务都是简化,扭曲,片面地对现实世界的浓缩和裁剪,由此产生的数据是零乱的,破碎的,局部的,其中所含有的含金量是极其有限的。如果同意这个世界上的万事万物可以而且正在被数据化和网络化,那么由此产生的大数据就必然是完整的和综合的,不仅包括网络公司通过自身服务所获得的用户行为数据,而且包括社会的,经济的,政治的,自然的方方面面的数据。这些数据当然分散在不同企业,机构和政府部门手中,汇聚整合在一起绝非易事,但操作上的困难并不能否定大数据本身的完整性和综合性。今天之所以讨论大数据时代的到来,是因为互联网发展到目前阶段使得现实世界数据化发展到了一定程度,各种信息终端普及到了一定程度,数据获取的成本降到了一定程度,使得完整和综合的数据不仅是一种理想,也正在变为现实。
大数据的特性之二是数据的开放性和公共性。正是因为完整的综合的大数据难以由一家公司,机构或政府部门所获得,所以大数据必然产生于一个开放的,公共的网络环境之中。这种开放性和公共性的实现取决于若干个网络开放平台或云服务以及一系列受到法律支持或社会公认的数据标准和规范。任何封闭的或单向获取的数据都不可能是大数据,无论这些数据的规模有多大。
大数据的特性之三是数据的动态性和及时性。天体物理学和理论物理学早就依赖于从宇宙间获取的大量数据,类似的学科还有环境生态学,医药学,和自控技术。但是,这和我们今天讨论的大数据不是一回事。今天的大数据是基于互联网的及时动态数据,不是历史的或严格控制环境下产生的东西。
所以,今天我们谈论的大数据是完整综合的,开放公共的,动态及时的,这样的大数据是我们过去从未有机会获取利用过的全新挑战,也是我们未来应该努力去争取利用的全新战略机会。如果有人以为过去积累的那点数据就是大数据,或者过去积累的数据处理利用能力和经验就可以在大数据时代自然领先,那不是无知就是狂妄。
近来媒体上对大数据方向的进展报道颇多,其中一个很能说明我心目中大数据的性质及其利用的前景。据8月30日《纽约时报》的报道:一家名为气候公司(Climate
Corporation)的创业企业每天都会对美国境内超过一百万个地点,未来两年的天气情况进行超过1万次模拟。随后,该公司将根系结构和土壤孔隙度的相关数据,与模拟结果相结合,为成千上万的农民提供农作物保险。
通过遥感获取土壤数据,这和我们过去所熟悉的通过网络服务获取用户网络行为数据不是一回事,数据的概念得以极大的扩充。每天对百万以上地点进行成万次的模拟,其数据量庞大,动态,及时。要想对每块田地提供精准的保险服务,肯定还需要与土地数据相配套的农产品期货数据,气候预测数据,国际贸易数据,国际政治和军事安全数据,国民经济各方面的数据,产业竞争数据,等等。在如此庞杂的大数据基础上推出的商业模式,是创新的,同现有农作物保险方式相比是具备极大竞争力的,是可持续和规模化的。更妙的是,这家公司基于大数据的运营,完全没有进行高额的网络设施投资,只是租用了亚马逊的公共云服务,一个月几万美元而已。
如果留心观察,这样的案例已经很多了,虽然都还比较简单初级,但足以说明问题。如果展开一下我们的想象力,类似上述案例的创新,在即将到来的大数据时代可以在任何行业,任何服务,任何公共管理上出现,由此可能产生的服务和商业模式是无穷尽的。同现有或现在还没有的服务和商业模式相比,服务更加精准,成本更加低廉,利润更加丰厚。这不是目前网络业所熟知的对现有用户数据的挖掘,不是对用户进行更精细的分组,不是现有数据技术的普及应用,而是一个全新的世界,一个全新的网络地球和数据地球。一个理想的前景是,一个以网络业为核心的大数据服务业会成为今后几十年世界经济和社会发展的主要推动力。当然,这事未必一定发生,尤其是在中国。如果我们网络业的朋友们没有雄心,没有想象力,那也可能除了少数公司成为大数据服务业的主力外,其他大部分公司仍然固守在陈旧的网络业内苦苦挣扎,变成大数据时代的传统产业大军中的一员。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01