京公网安备 11010802034615号
经营许可证编号:京B2-20210330
给要入门量化分析的人一些建议
针对你数学、物理较好以及有一定C基础的情况,我的建议(也是对所有想要入门量化分析的人)的建议是:
一. 数学
继续打好数学基础,学一学集合论、统计学方面的知识,方便以后可以从初级经济学的学习转向中高级。你大一,集合论和统计学如果没学过建议先入个门。比如国内著名的统计学大师陈希孺先生的《概率论与数理统计 (豆瓣)》、《数理统计学教程 (豆瓣)》等等,写得非常好,请仔细揣摩体会。
二. 经济学&金融学
数学基础可以了,如果学校教的你也觉得很简单,那就看一点计量经济学和中级微观经济学方面的书,看能不能看懂。
比如《计量经济学导论 (豆瓣)》这本书就不错,还有经典的范里安的中级微观经济学教材:《微观经济学 (豆瓣)》,以及经典圣经:《期权、期货和其他衍生品(第5版) (豆瓣)》。
当然,如果你想要出国深造,那么选择看英文版的是很好的选择。
但是如果你是想要更好地利用时间,看中文版也是不错的选择,因为看中文版肯定比英文版快得多。
三. 计算机与编程
1. 计算机
你如果之前没有学过计算机相关知识,我建议可以先看一本书入个门,了解计算机的大致工作原理,我推荐研读一下:《计算机科学概论(第11版) (豆瓣)》
2. 语言
然后,你既然要学习金融方面的知识,我建议可以暂时不学C或者C++,而选择学习python,python更简单,数理分析、科学计算能力更强大。我推荐看一下:《Python基础教程 (豆瓣)》,这本书讲的是python2.7,对初学者而言,还是看这本比较好。
你还可以参照统计语言R来更深入地理解python,我推荐《R语言编程艺术 (豆瓣)》。
然后你可以看一下专讲python用作数据分析的好书:《利用Python进行数据分析 (豆瓣)》。(这本书里面讲的python以及对应的pandas、scipy、numpy模块都是基于python2.7的——这就是为什么我推荐的python入门教材是python2.7的,对于初学者,版本问题很可能是个坑,学2.7更好。)
另外,家中常备:《Python标准库 (豆瓣)》,很多问题就不用重新造轮子了。
3. 未来
计量方法严格来讲只是传统方法,为了应对未来、成为宽客,建议学习数据挖掘、机器学习、人工智能方面的知识,我推荐《数据挖掘导论 (豆瓣)》,《机器学习
(豆瓣)》等等书籍。
另:python作为解释型语言,性能不及C等编译型的语言,特别是对于高频交易等,以防万一,建议还是入一下计算机的算法、数据结构、计算机系统坑。。。。当然,这又是个大坑。
四. 实践
现在有一些在线的金融系统,可以给你机会让你写你自己的模型的,你多留意一下,也可以问下老师,闲来没事儿写几个交易模型试一试。
据我所知目前大多数写交易模型的,都没有较强的综合能力(综合经济金融、数学、编程这三个方面),你要想比他们都强,那就把这三个方面的基础都打好。
最后,少年,我看你骨骼惊奇,这本《集体智慧编程 (豆瓣)》我就送给你了,写一个遗传算法为内核、并且底层优化的具有进化特征的交易模型吧,特别是在数据环境本身就具有进化特性的情况下,亮瞎他们!——至少听起来很牛逼~~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21