京公网安备 11010802034615号
经营许可证编号:京B2-20210330
爱德华・斯诺登曝光NSA监听之后,乔治・奥威尔著作《1984》的销量都增加了。就目前的情况来说,即使人们不喜欢老大哥在监视自己,也要准备好接受隐私被冒犯的代价,来换得安全保障。
那么“大数据”会怎么样?快速增长的个人数据掌握在公司们手中,它们使用新型的数据分析和人工智能技术来改进自己的产品和服务,预测顾客的需求。谷歌首席执行官拉里・佩奇(Larry Page)描述他心目中理想的科技形态是“一个真正智能的助理,能够帮人类去做事,我们就不必再费脑筋”。
试想一下居住在虚拟的唐顿庄园(Downton Abbey)里,有一台电脑帮你安排一天的计划,给出旅行的最佳路线建议、可能想要观看的影片和最适宜搭乘的航班——甚至帮你订票——这的确有诱惑力。我们都在赶时间,想要一个简单轻松的生活。只要不被信息轰炸或是迫失选择,有个私人助理服务还是不错的。
但是NSA监听事件让所有人大吃一惊,虽然监听计划已经存在60年了,我怀疑许多人是否能明白他们每天制造的数据量有多大,或者是否了解如今科技发展到怎样的程度——一小撮大数据公司已经在进行数据挖掘。科技发展得太快,两年前还认为是不可能的事情如今已经十分平常了。
“未来既令人激动又让人恐惧。拥有海量数据的公司们甚至要比你还要了解你自己。它们能预测你下面可能做什么,”李开复说。他是Google中国的前任CEO,目前在北京做投资。
上周我在一篇专栏文章里将谷歌与19世纪的通用电气进行了比较——这是一家创新的工业公司,借助了在新技术潮流发展的力量。不利的一面是谷歌、亚马逊、微软以及其他科技巨头正在积累自己的力量,需要小心翼翼地控制。
NSA和大数据公司将它们的数据库和计算能力用在了不同的地方——一个是发现间谍和恐怖分子,一个是为用户匹配服务。它们对大规模数据库的使用有相似之处,比如模式识别和网络分析等等。
更进一步来看,这涉及到人工智能技术,比如在用户输入关键词时分析搜索的目的、实时将演讲翻译成另外一种语言(像微软去年在中国演示的那样)、通过读取上千张图像去学习分辨一只猫的照片。
计算机学习人类趋同行为的能力被称作是“深度学习(deep learning)”,值得注意的是谷歌已经聘请了该领域的几位前沿学者,其中就包括科学家、作家雷・库兹韦尔(Ray Kurzweil)。NSA向美国私人公司开放的技术转让中就有“领先的机器学习技术”。
这种软件可以从信息碎片中预测许多东西,只要碎片足够多就可以,好像NSA从运营商Verizon那里获取电话拨叫元数据并对其分析一样。总统奥巴马向美国公民保证“没人在窃听你的电话”,但是只要拨叫纪录就足够了。
哈佛大学教授拉坦娅・斯威妮(Latanya Sweeney)的一项研究表明,有87%的人在获知年龄、性别和邮政编码的情况下能够被确认身份,只要在公开数据库里交叉确认(cross-checked)就可以。这恰恰是社交网络和互联网公司通常所收集的数据。
大数据公司的惊人能力来自一点,它们可以将顾客的个人数据进行整合,其中就涵盖购买的何种商品、位置在哪里(由移动电话的GPS搜集)。由此生成一组有关顾客意图的“推测数据(inferred data)”。
举例说明,如果我在印度时用安卓手机搜索“泰姬陵”,谷歌会优先显示北方邦(Uttar Pradesh)的神庙结果。如果我在伦敦东部的布里克街(Brick Lane),则会返回本地的孟加拉风味餐厅结果。基于我的评价纪录提供餐馆预订服务也就不难实现了。
从一方面来说,如果确实做到这一点(只要是一家好餐厅)我会很高兴,因为能够节省我的一些操作。从另一方面来看,正如世界经济论坛关于个人数据的报告里所讲:“预测数据给人感觉好像无所不知的老大哥在盯着监控录像一样。”
其中引发的担忧之一是掌握这种软件能力的大数据公司很难与之抗衡。我和其他用户提供的数据越多,它们对我们意图的预测就越准确。机器大脑越用越精明。
另外一个和信任有关。社交网络在保护用户数据方面做得很差,它们只拥有一小片段涉及用户行为、习惯和意愿的信息。很明显为什么NSA会把社交网络作为目标——NSA有计算能力,他们需要数据原料。
第三点是所有权的问题。我们都对自己的信息享有一定的权利。但是这些信息和其他人的信息被整合到一个大规模的意愿数据库中,情况会有什么变化?如果我改变主意,如何让信息恢复原状?
最重要的一点,我们不知道这种技术意味着什么,因为我们还处于大数据时代的初级阶段。诚然大数据有许多地方令人倾佩,但是需要一些时间让人们爱上它。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28