京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何在舆情引导下发挥大数据技术优势
近年来,以微信、微博为代表的社交媒体不断受到热捧。人们热衷于在这些社交媒体上发布自己的照片、心情、行踪等各类信息。手机支付、共享单车等在方便人们生活的同时,也在服务器上留下了大量的数据。
大数据带来的信息风暴正在改变我们的生活、工作和思维。一切事物、一切行为都被数据化;
正是基于这样的原因,大数据也拓宽和加深了舆情引导和研究的广度和深度。大数据时代,很多舆情问题,都能借助大数据得到更为准确的可视化的测量和呈现,为抢占舆情引导的先机提供了坚实的基础和有力的技术支撑。
利用大数据研判舆情动向
大数据技术的核心和目标是预测,具体到舆情引导,就是舆情工作人员利用大数据技术,从互联网浩如烟海的数据中挖掘出信息、判断趋势、提高效益。利用大数据技术把重点从单纯的搜集有效数据向对舆情的深入研判拓展,跟踪相关舆情,辅以决策参考。
大数据时代舆情进入雪崩状态的时间更短,网络舆情一般分潜伏期、爆发期与恢复期。事发后的12小时是一个关键的时间节点。这就要求对舆情热点的引导在潜伏期的12小时内,越早回应越主动。
因此,在大数据时代,要不断增强关联舆情信息的分析和预测,做到研判快、预警快、决策快。在数据收集时,还应采取以数据为中心的模式,侧重媒体热度、侧重负面信息、侧重具体评价、侧重公众情绪、侧重具体案例、侧重舆情分析、侧重综合舆情需求。
利用大数据开展舆情治理
大数据的出现和引用,引起了各国科技界,产业界和政府部门的高度关注。大数据作为数字化生产时代的新型战略资源,将对国家治理和社会发展起到巨大的作用。
要针对当前网络舆情治理现状,从维护国家利益、社会利益和个人利益的角度出发,采取切实可行的措施,利用大数据技术不断地改革与完善舆情热点的处置机制和处置手段,巩固和发展健康的网络程序,加强舆情治理,以维护社会稳定和长治久安的社会秩序。
探索建立我国的大数据政务公开系统,引导社会力量参与对公共数据的挖掘和使用,让数据发挥最大价值。将大数据和日常舆情管理紧密结合起来,提高网络舆情整体掌控能力。
利用大数据重塑管理体系
传统的舆情监测逻辑和研判方法,因其片面化、单一化和静态化,无法完成日益频繁和繁重的社会舆情管理任务,更谈不上支持社会治理科学决策和准确预判。
大数据技术的应用,能够对舆情数据进行立体化、全局化、动态化研究,通过挖掘、分析舆情关联数据,将监测目标时间节点提前到敏感消息传播初期,通过构建模型预测舆情走向,从而为正确引导舆情提供决策参考,进一步提高舆情管理的科学性、针对性和实效性。
当前,我国在大数据管理方面还存在数据分散、利用率低、安全性不高等问题,需要尽快出台国家层面的大数据战略规划,加快数据立法进程,加大资金、技术、人力资源投入。
一是加强数据监测技术,实现对媒体、论坛、博客、微博、微信等各个网络平台数据的全面抓取和记录,特别是要提高对图片、音视频等数据的自动识别能力。
二是加强大规模数据存储技术。建设具有海量存储能力的大数据平台,实现对大规模数据的高效读写和交换。
三是加强数据挖掘技术,从海量数据中快速识别有价值数据,并挖掘数据背后隐藏的规律。
四是加强数据分析技术,包括关联分析、聚类分析、语义分析等等,自动分析网上言论蕴含的意见倾向及相互之间的关联性,揭示舆情发展趋势。
五是加强数据安全技术,包括身份验证、入侵检测等等,保障数据安全。
随着大数据时代的到来,网络舆情在数据体量、复杂性和产生速度等方面发生巨大变化。网络舆情是网络舆论引导工作的基础和晴雨表,以大数据观念变革传统网络舆论引导思维,准确把握网络舆情的内在特征及其在演化过程中的潜在规律,对于新形势下做好网络舆论引导工作,维护网络社会安全,将具有重要的理论意义和实践价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01