
大数据如何改变商业_未来五年路线图_数据分析师
如果说2012年是大数据概念为人所知、引人瞩目、小试牛刀的一年,那么2013年大数据将会实现产品部署,早期投资获得回报,一小部分的产业被颠覆。到了2014年,各种大数据项目和系统很可能成为标准配置,到处可见。原文来自 ZDNet,由虎嗅编译。
今年,大数据和云计算一起作为科技术语出现。大数据意味着非常多的事情,但是被援引的次数太多了,几乎失去了其本来的定义。大数据的定义通常和速率(数据移动得快),体积(数据规模庞大),和种类(非结构化和结构化的信息)三点有关。
大数据真的如人们所描述的那样吗?是的。对我来说,大数据代表了科技和商业的一致——也就是首席信息官们始终追求的圣杯(Holy Grail)——成为了一件顺理成章的事情。大数据项目从本质上来说和营收、风险利润是相关的。换句话说,信息科技和商业世界情不自禁地联合了起来。
显然我们正处在一个追捧大数据的阶段,我认为可以和1990年代末的Linux和2000年代初的开源软件运动相提并论。那时候Linux正要开始改变世界,和微软等厂商一较高下。从许多方面来说,Linux和开源软件(比如安卓)的确改变了一切。但是在行业变革的过程中发生了一个有趣的事情——开放软件成了每一个数据中心的标准配置,如今已经被认为是理所应当了。这场变革发生了,我们仅仅是不再谈论它而已。云计算也是一样。
大数据会遵循同样的发展路线。当然,会创造数百万个工作机会,相关人才也会变得有一点抢手。公司们也会用大数据升级各自的行业。随着Cloudera这样的创业公司成为新的红帽子(Red Hats),各家厂商的市场座次也逐渐明朗。
如下是我对大数据未来几年的展望。
2013年:2012年的试验项目成品化,每一个行业的垂直领域都会有一个成功的大数据案例。
2014年:在2013年成功经验和客户研究案例的基础上,一些行动快速的市场跟随者将进入大数据领域。各个行业都将遵循大数据的游戏规则。初期的回报看上去会很不错。公司的主要关注点在内部数据上,因为有很多东西可以挖掘。外部数据也很有用,但是这段时期不会有什么新进展。
2015年:在制定大数据计划时,公司们开始将目光投向外部数据。在2015年之前,消费者所面对的公司都在花费大部分时间用于研究外部信息。每一个分析师和数据仓库都将会有一个Hadoop计算簇和一个大数据层。像Hadoop这样的技术不再受人关注,因为这些技术始终非常重要,慢慢淡化进入软件栈。围绕大数据题材的整合并购开始加速。
2016年:数据驱动的决策代替了直觉和常识。这个时候公司们要开始仔细思考数据的使用,避免出现无意义的数据。公司会因为错误解读了数据而导致重大事故的发生。
2017年:云和大数据、数据仓库合并起来,成为了一项服务,“分析即服务”和“数据即服务”成为主流。很少有公司真正考虑创建自己的Hadoop计算簇进行整合工作。大数据基础设施即将实现。注意:2017年是这些大数据即服务为大众所普及的一个估算时间。大数据即服务的市场竞争在这个时间段正在进行,将会于不久涉及到关键的大范围用户群。
大数据在IT采购周期上又是怎样的情况呢?大数据项目需要有更多高级别的管理人员。分析如下:
首席信息官:大数据项目终于能让首席信息官解决一直以来的“我们一致吗?”问题。
首席财务官:将大数据分析作为控制成本、最大化利润的方式。潜在风险是公司有可能因为忽略人的因素而失去好的机会。
首席市场官:2012年,首席市场官成了IT采购的红人。不过这有点不太合理,因为首席市场官主要依赖外部数据和信号判断项目。
首席运营官,采购人员:大数据可以让存货、供应和制造过程自始至终都可以进行追踪。效率能够得到改进。
数据科学家:这部分员工越来越被看作是“首席”管理层的接班人。职场方面,数据高手想去哪家公司都行。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01