京公网安备 11010802034615号
经营许可证编号:京B2-20210330
商务智能与企业绩效管理
商务智能(BI)是从企业已有的像财务系统、销售系统、采购系统、库存管理系统、OA系统等的数据中,来实现决策者或者管理者需要的报表、查询、分析和数据挖掘的信息系统。在以前人们也将其称为决策支持系统。主要包括五个层次的分析:1、以前发生了什么,采用报表、饼图柱图、仪表盘、关键绩效指标等直观的形式展现企业的运营状况,像损益表、现金流量表、负债表等;2、为什么发生了:这是商务智能非常重要的一部分,也叫例外分析,从以前发生了什么,发现了问题,由人工或者电脑自动完成预警,诸如销售没有达标,这时管理者就需要获得进一步的信息:什么原因没有达标,哪个地域出了问题,什么产品出了问题,市场需求出了问题,还是库存或者供应商出了问题,找到出现问题的原因,调整政策和策略,以达到目标的实现;3、现在发生了什么:监控企业运营实时出现的问题,诸如欺诈行为的发现,客户的流失处理,生产流程的异常等,需要实时监控、分析和处理;4、将来会发生什么:像预算的预测、市场发展趋势的分析、库存的及时补货、产品合理的定价等;5、商务活动监控:企业的执行力需要按照每个活动的计划实现,一旦发现在整个流程中的那个环节出现了问题,就应该自动调节或者通知相关管理者人为调节。
什么样的企业需要商务智能呢?在企业中已经有了一些业务系统或者管理系统,已经有了一定的运营数据积累,需要从数据中获得信息、从信息中获得知识,再从知识中正确的决策的企业,不在是拍脑袋决策,都应该实施商务智能。
如何实现商务智能?要业务驱动,想大做小。如何做到业务驱动,就是企业的决策者急需要解决的问题,比如企业的决策者需要掌握企业的运营状况,了解销售的现状,就将销售作为一个主题。要获得正确的信息,就需要有正确的数据,垃圾数据必定导致垃圾的结果,所以商务智能的一个关键步骤就是数据的清洗和加载,现在有很多专门的工具来实现,然后就需要有分析和展现的工具,像报表工具、例外分析的工具和关键绩效指标生成的工具等。
如何保证商务智能项目成功实现?一是一把手工程,需要管理层的支持;二是有明确的分析和智能运营管理的需求;三是要有有实施经验的专家;四是有大量的数据积累;五是要有简单易用的“傻瓜”工具;五是短平快实现主要的需求,使得相关管理层快速看到实施的效果,然后再扩大应用的内容和范围。
企业绩效管理(CPM)是继商务智能之后的另一个企业管理计算机应用的领域,主要包括六大方面:企业战略设计、商务盈利建模、全面预算规划、活动执行监控、运营分析决策、结果报告展现。这是一个非常大的领域,在这六个方面主要包括平衡计分卡、战略地图;what-if分析;全面预算编制工具;将预算的结果导入ERP系统实现管控;商务智能中的分析;以及商务智能的报告展现。其实在企业绩效管理的六大部分中,几乎每个部分都会包括商务智能的内容。但是人们认识的企业绩效管理更偏重于战略目标的制定,预算的编制和实现,以及操作层的执行操作,这个系统从某方面而讲言是运营系统、分析决策系统和协同系统相结合的产物。
企业绩效管理来监控企业绩效好坏一般有三个方法:一是同去年同期比或者连续几个季度业绩完成的情况(和历史相比);二是超额完成任务多少(和预算相比);三是市场占有率提高了多少(和竞争对手相比)。这样企业的预算就是非常重要的,其实没有预算的公司就没有企业的发展方向,就没有设定衡量企业绩效的标准。预算是向前看的指标,而报表是向后看的指标,执行是将规划落到实处的具体活动。
企业绩效管理的项目更需要分步实施,企业已经上了ERP系统,应该从预算管理开始,然后再到分析决策,当然也可以将分析做在预算之前,但是这样的分析一般以报表和部分例外分析为主。实现企业绩效管理有的企业也从决策者需要的绩效管理驾驶舱开始,先为决策者提供一个直观的分析决策系统,让管理者时刻可以了解到企业的运营状况,如销售指标、财务指标、客户满意度指标和学习与创新的指标,完成任务的状况、市场占有率、为决策者实现辅助决策。
那些企业需要企业绩效管理?企业已经上了ERP系统、至少有了财务系统和核心业务系统,在此基础上,企业需要更精细化的管理,需要制定企业的预算和规划,不是拍脑袋做决策,而是从数据中看效益,就需要企业绩效管理。
如何成功实施企业绩效管理?除了商务智能的条件外,一定要让管理层和执行层介入。因为它不但包括分析系统,还包括预算编制的运营系统,还包括一线执行层活动等。由于系统的庞大,一定要整体设计,分步实施。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27