Python使用filetype精确判断文件类型
判断文件类型在开发中非常常见的需求,怎样才能准确的判断文件类型呢?首先大家想到的是文件的后缀,但是非常遗憾的是这种方法是非常不靠谱的,因为文件的后缀是可以随意更改的,而python中有个小插件可以实现,下面我们就来详细探讨下
filetype.py
Small and dependency free Python package to infer file type and MIME type checking the magic numbers signature of a file or buffer.
This is a Python port from filetype Go package. Works in Python +3 .
一个小巧自由开放Python开发包,主要用来获得文件类型。包要求Python 3.+
功能特色
•简单友好的API
•支持宽范围文件类型
•提供文件扩展名和MIME类型判断
•文件的MIME类型扩展新增
•通过文件(图像、视频、音频…)简单分析
•可插拔:添加新的自定义类型的匹配
•快,即使处理大文件
•只需要前261个字节表示的最大文件头,这样你就可以通过一个单字节
•依赖自由(只是Python代码,没有C的扩展,没有libmagic绑定)
•跨平台文件识别
安装
pip install filetype
API
详情请查看 annotated API reference .
实例
简单的文件类型识别
支持类型
图片
• jpg – image/jpeg
• png – image/png
• gif – image/gif
• webp – image/webp
• cr2 – image/x-canon-cr2
• tif – image/tiff
• bmp – image/bmp
• jxr – image/vnd.ms-photo
• psd – image/vnd.adobe.photoshop
• ico – image/x-icon
视频
• mp4 – video/mp4
• m4v – video/x-m4v
• mkv – video/x-matroska
• webm – video/webm
• mov – video/quicktime
• avi – video/x-msvideo
• wmv – video/x-ms-wmv
• mpg – video/mpeg
• flv – video/x-flv
音频
• mid – audio/midi
• mp3 – audio/mpeg
• m4a – audio/m4a
• ogg – audio/ogg
• flac – audio/x-flac
• wav – audio/x-wav
• amr – audio/amr
资料库
• epub – application/epub+zip
• zip – application/zip
• tar – application/x-tar
• rar – application/x-rar-compressed
• gz – application/gzip
• bz2 – application/x-bzip2
• 7z – application/x-7z-compressed
• xz – application/x-xz
• pdf – application/pdf
• exe – application/x-msdownload
• swf – application/x-shockwave-flash
• rtf – application/rtf
• eot – application/octet-stream
• ps – application/postscript
• sqlite – application/x-sqlite3
• nes – application/x-nintendo-nes-rom
• crx – application/x-google-chrome-extension
• cab – application/vnd.ms-cab-compressed
• deb – application/x-deb
• ar – application/x-unix-archive
• Z – application/x-compress
• lz – application/x-lzip
字体
• woff – application/font-woff
• woff2 – application/font-woff
• ttf – application/font-sfnt
• otf – application/font-sfnt
基准测试
使用链接中的文件进行测试,你可以点击获得到它: real files .
Environment: OSX x64 i7 2.7 Ghz
------------------------------------------------------------------------------------------
benchmark: 7 tests
------------------------------------------------------------------------------------------
Name (time in ns) Min
Max Mean StdDev
Median IQR Outliers(*) Rounds Iterations
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_infer_image_from_bytes 357.6279 (1.0) 29,166.5395
(1.0) 1,642.3360 (1.0) 380.9934 (1.0) 1,509.9843
(1.0) 158.9457 (1.0) 9095;13752 102301 6
test_infer_audio_from_bytes 953.6743 (2.67) 96,082.6874
(3.29) 16,534.5880 (10.07) 3,002.1143 (7.88) 15,974.0448
(10.58) 953.6743 (6.00) 4514;6051 41528 1
test_infer_video_from_bytes 13,828.2776 (38.67) 272,989.2731
(9.36) 16,151.3144 (9.83) 3,361.2320 (8.82) 15,020.3705
(9.95) 953.6743 (6.00) 2522;2887 22193 1
test_infer_image_from_disk 15,974.0448 (44.67) 108,957.2906
(3.74) 18,621.0844 (11.34) 3,895.4441 (10.22) 17,166.1377
(11.37) 1,192.0929 (7.50) 1528;1804 10206 1
test_infer_video_from_disk 23,841.8579 (66.67) 229,120.2545
(7.86) 28,691.3476 (17.47) 6,242.9901 (16.39) 25,987.6251
(17.21) 4,053.1158 (25.50) 1987;1247 15651 1
test_infer_zip_from_disk 26,941.2994 (75.33) 230,073.9288
(7.89) 32,123.3861 (19.56) 7,524.4988 (19.75) 29,087.0667
(19.26) 4,768.3716 (30.00) 1349;1292 16132 1
test_infer_tar_from_disk 33,855.4382 (94.67) 164,031.9824
(5.62) 36,884.4401 (22.46) 4,489.4443 (11.78) 36,001.2054
(23.84) 953.6743 (6.00) 1036;1828 14666 1
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03