京公网安备 11010802034615号
经营许可证编号:京B2-20210330
越来越多Java程序员转行大数据的原因
据最新发布的《大数据人才报告》显示,目前全国的大数据人才仅46万,未来3-5年内大数据人才的缺口将高达150万。
领英报告表明,数据分析人才的供给指数最低,仅为0.05,属于高度稀缺。数据分析人才跳槽速度也最快,平均跳槽速度为19.8个月。
根据统计,未来中国基础性数据分析人才缺口将达到1400万,而在BAT企业招聘的职位里,60%以上都在招大数据人才。
■大数据专业就业三大方向
大数据主要的三大就业方向:大数据系统研发类人才、大数据应用开发类人才和大数据分析类人才。
在此三大方向中,各自的基础岗位一般为大数据系统研发工程师、大数据应用开发工程师和数据分析师。
■大数据专业人才就业薪资
1、基础人才-数据分析师
北京数据分析平均工资:¥ 10630/月,取自 15526 份样本,较 2016 年,增长 9.4%。
2、大数据开发工程师
北京大数据开发平均工资:¥ 30230/月。
3、Hadoop开发工程师
北京hadoop平均工资:¥ 20130/月,取自 1734 份样本。
4、数据挖掘工程师
北京数据挖掘平均工资:¥ 21740/月,取自 3449 份样本,较 2016 年,增长 20.3%;
5、算法工程师
北京算法工程师平均工资:¥ 22640/月,取自 10176 份样本。
哪些公司需求大数据人才?
答:所有的公司。大到世界500强,BAT这样的公司,小到创业公司,他们都需求数据人才。
马云大boss说“我们已从IT时代进入了DT时代,未来我们的汽车、电灯泡、电视机、电冰箱等将全部装上操作系统,并进行数据集成,数据将会让机器更“聪明”。DT时代,数据将成为主要的能源,离开了数据,任何组织的创新都基本上是空壳。”
数据,未来的一切。
这些人才哪里来?
据教育部数据显示,目前,全国已有35所高等院校开通了大数据专业。也就是说,高考报志愿可直接报大数据专业的学校了。全国有哪些高校开通了大数据专业呢?
从统计表可以看出,开通了大数据专业的学校主要分布在一线城市(北京、上海、广州)以及云南、贵州和四川三个西南地区。
非科班出身何去何从?
无论大小企业数据分析人才都成为刚需,科班出身优势明显,但是相关专业和非科班出身,通过再学习掌握数据分析知识同时实践于职场,也可以为个人职业生涯锦上添花。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26