
且慢说“大数据”的无所不能
“大数据”是个好东西,是科学的前沿,值得我们认真积极关注、推介和参与,但它绝不是哈利波特,不会“一抓就灵”,不能包打天下和无所不能。
回头看看这些年的所谓产业“浪潮”新理念、新理论和新技术,一旦引入我国后,常是泡沫翻腾,真经并不多。去年是“云计算”,今年是“大数据”,官员、学者或媒体人嘴上不常换点国际流行的新词,都不好意思开口。
其实,“大数据”很简单,不神秘,以前无法处理的海量数据或没当做数据的东西(如你在超市逛逛或对那个营业员笑一笑),因计算机计算能力如“云计算”的进步,都可以分析出个子丑寅卯了,如很多人逛超市的路径与购物之间有数据关系,据此调整布局有利于销售,美国有超市把影碟与尿布放在一起,就是通过“大数据”分析发现,来为孩子买尿布的父母喜欢为自己带盘碟子。
但把“大数据”用做解决世界上最难处理的问题的全能办法,从管理城市到消除贫困,从制止恐怖袭击、疾病流行到拯救地球环境等,以为有了“大数据”,就没有解决不了的问题,这也是一种误解。人类的思想、个人的文化和行为模式、不同国家及社会的存在发展都非常复杂、曲折和独特,显然不能全部由计算机来“数字自己说话”。比如,近来欧美有人提倡用“大数据”分析人的日常行为模式和习惯,判断谁将要犯罪,以此帮助预防未来的犯罪,就引起了很大的争议和质疑,公众担心因司法程序缺失而受到莫名威胁。
其实,企图用一行行的代码和庞大数据库的“大数据”来解释和指导世间万物万象,很像此前企图用基因等生物密码来解释和调控人类的行为模式,看起来是客观中立的,但说到底,“大数据”再“大”,也不会“自己说话”,还是设计者、分析者和使用者在说了算。所以,“大数据”并不能使人们完全摆脱曲解、隔阂和错误的成见。
而且,数据的采集也会使“大数据”不中立和不全面,以至于不公正,如目前社交媒体等即时通讯是“大数据”分析的一个普遍信息源,那里无疑有许多信息可以挖掘,国外神话“大数据”的范例几乎都来源于此。但至少在我国现在和未来一段时间里,以此途径反映民情的某些“大数据”可能会忽视了“沉默的大多数”而失准。过分依赖和迷信“大数据”,难以避免对某一群体的“数据歧视”,可能会依据错误的成见作出重大的公共政策和商业决定。
更需指出的是,“大数据”的潜在负面效应不可忽视。无处不在的“大数据”使个人隐私无处藏身,甚至会引发更多问题。例如,最近,“大数据”被用来预测脸谱网用户极其敏感的个人信息,如性取向、种族、宗教和政治观点、性格特征、智力水平、快乐与否、成瘾药物使用、父母婚姻状况、年龄及性别等。这些高度敏感信息很可能会被雇主、房东、政府部门、教育机构及私营组织用来对个人实施歧视。
“大数据时代”的作者维克托说,大数据带来的信息风暴正在变革我们的生活、工作和思维,大数据开启了一次重大的时代转型。这话很有道理。但他认为,大数据时代最大的转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。歌颂者说,这是维克托颠覆了千百年来人类的思维惯例,对人类的认知和与世界交流的方式提出了全新的挑战。可我们有疑:不问或不知“为什么”,我们还是人吗?
其实,维克托又新写了一本叫“删除”的书,讲述了大数据时代的信息取舍,说遗忘是一种美德。说白了,就是该记的记,该忘的忘。这就更加说明,无论到何时,其实都还是人在思考和“说话”,即使在“大数据时代”可以通过数据形式来部分表达。所以,把“大数据”提高到不恰当的高度,甚至魔幻化或泡沫化,对推广“大数据”技术及应用不仅无益,还会弄成一些新的神话,或许还有笑话。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04