
如何用R做计量经济学
CRAN任务视图:计量经济学
线形回归模型(Linear regression models)
ž 线形模型可用stats包中lm()函数通过OLS来拟合,该包中也有各种检验方法用来比较模型,如:summary() 和anova()。
ž lmtest包里的coeftest()和waldtest()函数是也支持渐近检验(如:z检验而不是检验,卡方检验而不是F检验)的类似函数。
ž car包里的linear.hypothesis()可检验更一般的线形假设。
ž HC和HAC协方差矩阵的这些功能可在sandwich包里实现。
ž car和lmtest包还提供了大量回归诊断和诊断检验的方法。
ž 工具变量回归(两阶段最小二乘)由AER包中的ivreg()提供,其另外一个实现sem包中的tsls()。
微观计量经济学(Microeconometrics)
ž 许多微观计量经济学模型属于广义线形模型,可由stats包的glm()函数拟合。包括用于选择类数据(choice data)的Logit和probit模型,用于计数类数据(count data)的poisson模型。这些模型回归元的值可用effects获得并可视化。
ž 负二项广义线形模型可由MASS包的glm.nb()实现。aod包提供了负二项模型的另一个实现,并包含过度分散数据的其它模型。
ž 边缘(zero-inflated)和hurdle计数模型可由pscl包提供。
ž 多项响应(Multinomial response):特定个体协变量(individual-specific covariates)多项模型只能由nnet包中multinom()函数提供。mlogit包实现包括特定个体和特定选择(choice-specific)变量。多项响应的广义可加模型可由VGAM包拟合。针对多项probit模型的贝叶斯方法由MNP包提供,各种贝叶斯多项模型(包括logit和probit)在bayesm包中可得。
ž 顺序响应(Ordered response):顺序响应的比例优势回归由MASS包中polr()函数实现。包ordinal为顺序数据(ordered data)提供包括比例优势模型(propotional odds models)以及更一般规范的累积链接模型(cumulative link models)。贝叶斯顺序probit模型由包bayesm提供。
ž 删失响应(Censored response):基本删失回归模型(比如,tobit模型)可以由survival包中的suevreg()函数拟合,一个便利的接口tobit()在AER包中。更深入的删失回归模型,包括面板数据的模型,由censReg包提供,样本选择的模型在sampleSelection包中可得。
ž 杂项:有关微观计量经济学得进一步精细工具由micEcon族包提供:Cobb-Douglas分析、translog、二次函数在micEcon里;规模弹性不变(Constant Elasticity of Scale,CES)函数在micEconCES里;对称归一二次利润(Symmetric Normalized Quadratic Profit,SNQP)函数在micEconSNQP里;几乎理想的需求函数模型系统(Almost Ideal Demand System ,AIDS)函数在micEconAids包里;随机前沿分析(Stochastic Frontier Analysis)在frontier包中;bayesm包执行微观计量济学和营销学(marketing)中的贝叶斯方法;相对分布推断在包reldist里。
其它的回归模型(Further regression models)
ž 非线性最小二乘回归建模可用stats包里的nls()实现。
ž 分位数回归(Quantile Regression):quantreg(包括线性、非线性、删失、局部多项和可加分位数回归)。
ž 面板数据的线性模型:plm。一个空间面板模型的包(splm)正在R-Forge开发。
ž 广义动量方法(Generalized method of moments,GMM)和广义实证似然(generalized empirical likelihood,GEL):gmm。
ž 线性结构方程模型:sem,包括两阶段最小二乘。
ž 联立方程估计:systemfit。
ž 非参核方法:np。
ž Beta回归:betareg和gamlss
ž 截位(高斯)回归:truncreg。
ž 非线性混合效应模型:nlme和lme4。
ž 广义可加模型:mgcv、gam、gamlss和VGAM。
ž 杂项:包VGAM、Design和Hmisc包提供了若干(广义)线性模型处理的扩展工具,Zelig是一个针对很多种回归模型的易于使用的统一接口。
基本的时间序列架构(Basic time series infrastructure)
ž stats包的“ts” 类是R的规则间隔时间序列的标准类(尤其是年度、季度和月度数据)。
ž “ts”格式的时间序列可以与zoo包中的“zooreg” 强制互换,而不丢失信息。zoo包规则和不规则间隔时间序列的架构(后者通过类“zoo”),其中时间信息可以是任意类。这包括日间序列(典型地,以“Date”时间索引)或日内序列(例如,以“POSIXct”时间索引)。
ž 建立在“POSIXt”时间-日期类上的its、tseries和timeSeries(前fSeries)包也提供不规则间隔时间序列的架构,特别用于金融分析。
时间序列建模(Time series modelling)
ž stats包里有经典的时间序列建模工具,arima()函数做ARIMA建模和Box-Jenkins-type分析。
ž stats包还提供StructTS()函数拟合结构时间序列。
ž 可以用nlme包中的gls()函数经由OLS拟合含AR误差项的线性回归模型。
ž 时间序列的滤波和分解可以用stats 包的decompose() 和HoltWinters() 函数。
ž 这些方法的扩展,尤其是预测和模型选择,在forecast 包里。
ž mFilter 里有各种各样的时序滤波方法。
ž 估计向量自回归(VAR)模型,有若干方法可用:简单模型可用stats 包里ar()拟合,vars 包提供更精巧的模型,dse 中的estVARXls()和贝叶斯方法在MSBVAR 中。dynlm包有一个经由OLS拟合动态回归模型的方便接口,dyn实现了一个用于其它回归函数的不同方法。
ž 可以用dse拟合更高级的动态方程组。
ž tsDyn 提供各种非线性自回归时序模型。
ž 高斯线性状态空间模型可用dlm 拟合(通过最大似然、卡尔曼滤波/平滑和贝叶斯方法)。
ž 包urca、tseries和CADFtest提供了单位根和协整技术。
ž 时间序列因子分析在tsfa 包里。
ž 包sde提供随机微分方程的模拟和推断。
ž 非对称价格传导建模在apt包中。
杂项
ž 矩阵操作(Matrix manipulations)。作为一个向量和矩阵语言,R有许多基本函数处理矩阵,与Matrix和SparseM包互补。
ž 放回再抽样(Bootstrap)。除了推荐的boot包,bootstrap或simpleboot包里有一些其它的常规bootstrapping技术;还有些函数专门为时间序列数据而设计,如:meboot包里的最大熵bootstrap,tseries包里的tsbootstrap()函数。
ž 不平等(Inequality)。为了测量不平等(inequality),集中(concentration)和贫穷(poverty),ineq包提供了一些基本的工具,如:劳伦茨曲线(Lorenz curves),Pen's parade,基尼系数(Gini coefficient)。
ž 结构变化(Structural change)。R有很强的处理参数模型的结构变化和变化点的能力,可参考strucchange和segmented包。
数据集(Data sets)
ž Packages AER和Ecdat包含许多来自计量经济学教科书和杂志(应用计量经济学,商业/经济统计)的数据集。
ž AER另外提供大量例子再现来自教材和文献的分析,演示各种计量经济学方法。
ž FinTS 是Tsay的《Analysis of Financial Time Series》(2nd ed., 2005, Wiley)一书的R参考,包含运行其中一些例子所需的数据集、函数和脚本。
ž DNmoney包提供加拿大货币流通额。
ž pwt包提供佩恩世界表(Penn World Table)。
ž 包expsmooth、fma和Mcomp分别是《Forecasting with Exponential Smoothing: The State Space Approach》(Hyndman, Koehler, Ord, Snyder, 2008, Springer)、《Forecasting: Methods and Applications》(Makridakis, Wheelwright, Hyndman, 3rd ed., 1998, Wiley)和《the M-competitions》的时间序列数据包
ž 包erer包含《Empirical Research in Economics: Growing up with R》(Sun, forthcoming)一书中的函数和数据集。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18