京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何用R做计量经济学
CRAN任务视图:计量经济学
线形回归模型(Linear regression models)
ž 线形模型可用stats包中lm()函数通过OLS来拟合,该包中也有各种检验方法用来比较模型,如:summary() 和anova()。
ž lmtest包里的coeftest()和waldtest()函数是也支持渐近检验(如:z检验而不是检验,卡方检验而不是F检验)的类似函数。
ž car包里的linear.hypothesis()可检验更一般的线形假设。
ž HC和HAC协方差矩阵的这些功能可在sandwich包里实现。
ž car和lmtest包还提供了大量回归诊断和诊断检验的方法。
ž 工具变量回归(两阶段最小二乘)由AER包中的ivreg()提供,其另外一个实现sem包中的tsls()。
微观计量经济学(Microeconometrics)
ž 许多微观计量经济学模型属于广义线形模型,可由stats包的glm()函数拟合。包括用于选择类数据(choice data)的Logit和probit模型,用于计数类数据(count data)的poisson模型。这些模型回归元的值可用effects获得并可视化。
ž 负二项广义线形模型可由MASS包的glm.nb()实现。aod包提供了负二项模型的另一个实现,并包含过度分散数据的其它模型。
ž 边缘(zero-inflated)和hurdle计数模型可由pscl包提供。
ž 多项响应(Multinomial response):特定个体协变量(individual-specific covariates)多项模型只能由nnet包中multinom()函数提供。mlogit包实现包括特定个体和特定选择(choice-specific)变量。多项响应的广义可加模型可由VGAM包拟合。针对多项probit模型的贝叶斯方法由MNP包提供,各种贝叶斯多项模型(包括logit和probit)在bayesm包中可得。
ž 顺序响应(Ordered response):顺序响应的比例优势回归由MASS包中polr()函数实现。包ordinal为顺序数据(ordered data)提供包括比例优势模型(propotional odds models)以及更一般规范的累积链接模型(cumulative link models)。贝叶斯顺序probit模型由包bayesm提供。
ž 删失响应(Censored response):基本删失回归模型(比如,tobit模型)可以由survival包中的suevreg()函数拟合,一个便利的接口tobit()在AER包中。更深入的删失回归模型,包括面板数据的模型,由censReg包提供,样本选择的模型在sampleSelection包中可得。
ž 杂项:有关微观计量经济学得进一步精细工具由micEcon族包提供:Cobb-Douglas分析、translog、二次函数在micEcon里;规模弹性不变(Constant Elasticity of Scale,CES)函数在micEconCES里;对称归一二次利润(Symmetric Normalized Quadratic Profit,SNQP)函数在micEconSNQP里;几乎理想的需求函数模型系统(Almost Ideal Demand System ,AIDS)函数在micEconAids包里;随机前沿分析(Stochastic Frontier Analysis)在frontier包中;bayesm包执行微观计量济学和营销学(marketing)中的贝叶斯方法;相对分布推断在包reldist里。
其它的回归模型(Further regression models)
ž 非线性最小二乘回归建模可用stats包里的nls()实现。
ž 分位数回归(Quantile Regression):quantreg(包括线性、非线性、删失、局部多项和可加分位数回归)。
ž 面板数据的线性模型:plm。一个空间面板模型的包(splm)正在R-Forge开发。
ž 广义动量方法(Generalized method of moments,GMM)和广义实证似然(generalized empirical likelihood,GEL):gmm。
ž 线性结构方程模型:sem,包括两阶段最小二乘。
ž 联立方程估计:systemfit。
ž 非参核方法:np。
ž Beta回归:betareg和gamlss
ž 截位(高斯)回归:truncreg。
ž 非线性混合效应模型:nlme和lme4。
ž 广义可加模型:mgcv、gam、gamlss和VGAM。
ž 杂项:包VGAM、Design和Hmisc包提供了若干(广义)线性模型处理的扩展工具,Zelig是一个针对很多种回归模型的易于使用的统一接口。
基本的时间序列架构(Basic time series infrastructure)
ž stats包的“ts” 类是R的规则间隔时间序列的标准类(尤其是年度、季度和月度数据)。
ž “ts”格式的时间序列可以与zoo包中的“zooreg” 强制互换,而不丢失信息。zoo包规则和不规则间隔时间序列的架构(后者通过类“zoo”),其中时间信息可以是任意类。这包括日间序列(典型地,以“Date”时间索引)或日内序列(例如,以“POSIXct”时间索引)。
ž 建立在“POSIXt”时间-日期类上的its、tseries和timeSeries(前fSeries)包也提供不规则间隔时间序列的架构,特别用于金融分析。
时间序列建模(Time series modelling)
ž stats包里有经典的时间序列建模工具,arima()函数做ARIMA建模和Box-Jenkins-type分析。
ž stats包还提供StructTS()函数拟合结构时间序列。
ž 可以用nlme包中的gls()函数经由OLS拟合含AR误差项的线性回归模型。
ž 时间序列的滤波和分解可以用stats 包的decompose() 和HoltWinters() 函数。
ž 这些方法的扩展,尤其是预测和模型选择,在forecast 包里。
ž mFilter 里有各种各样的时序滤波方法。
ž 估计向量自回归(VAR)模型,有若干方法可用:简单模型可用stats 包里ar()拟合,vars 包提供更精巧的模型,dse 中的estVARXls()和贝叶斯方法在MSBVAR 中。dynlm包有一个经由OLS拟合动态回归模型的方便接口,dyn实现了一个用于其它回归函数的不同方法。
ž 可以用dse拟合更高级的动态方程组。
ž tsDyn 提供各种非线性自回归时序模型。
ž 高斯线性状态空间模型可用dlm 拟合(通过最大似然、卡尔曼滤波/平滑和贝叶斯方法)。
ž 包urca、tseries和CADFtest提供了单位根和协整技术。
ž 时间序列因子分析在tsfa 包里。
ž 包sde提供随机微分方程的模拟和推断。
ž 非对称价格传导建模在apt包中。
杂项
ž 矩阵操作(Matrix manipulations)。作为一个向量和矩阵语言,R有许多基本函数处理矩阵,与Matrix和SparseM包互补。
ž 放回再抽样(Bootstrap)。除了推荐的boot包,bootstrap或simpleboot包里有一些其它的常规bootstrapping技术;还有些函数专门为时间序列数据而设计,如:meboot包里的最大熵bootstrap,tseries包里的tsbootstrap()函数。
ž 不平等(Inequality)。为了测量不平等(inequality),集中(concentration)和贫穷(poverty),ineq包提供了一些基本的工具,如:劳伦茨曲线(Lorenz curves),Pen's parade,基尼系数(Gini coefficient)。
ž 结构变化(Structural change)。R有很强的处理参数模型的结构变化和变化点的能力,可参考strucchange和segmented包。
数据集(Data sets)
ž Packages AER和Ecdat包含许多来自计量经济学教科书和杂志(应用计量经济学,商业/经济统计)的数据集。
ž AER另外提供大量例子再现来自教材和文献的分析,演示各种计量经济学方法。
ž FinTS 是Tsay的《Analysis of Financial Time Series》(2nd ed., 2005, Wiley)一书的R参考,包含运行其中一些例子所需的数据集、函数和脚本。
ž DNmoney包提供加拿大货币流通额。
ž pwt包提供佩恩世界表(Penn World Table)。
ž 包expsmooth、fma和Mcomp分别是《Forecasting with Exponential Smoothing: The State Space Approach》(Hyndman, Koehler, Ord, Snyder, 2008, Springer)、《Forecasting: Methods and Applications》(Makridakis, Wheelwright, Hyndman, 3rd ed., 1998, Wiley)和《the M-competitions》的时间序列数据包
ž 包erer包含《Empirical Research in Economics: Growing up with R》(Sun, forthcoming)一书中的函数和数据集。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15