
如何用R做计量经济学
CRAN任务视图:计量经济学
线形回归模型(Linear regression models)
ž 线形模型可用stats包中lm()函数通过OLS来拟合,该包中也有各种检验方法用来比较模型,如:summary() 和anova()。
ž lmtest包里的coeftest()和waldtest()函数是也支持渐近检验(如:z检验而不是检验,卡方检验而不是F检验)的类似函数。
ž car包里的linear.hypothesis()可检验更一般的线形假设。
ž HC和HAC协方差矩阵的这些功能可在sandwich包里实现。
ž car和lmtest包还提供了大量回归诊断和诊断检验的方法。
ž 工具变量回归(两阶段最小二乘)由AER包中的ivreg()提供,其另外一个实现sem包中的tsls()。
微观计量经济学(Microeconometrics)
ž 许多微观计量经济学模型属于广义线形模型,可由stats包的glm()函数拟合。包括用于选择类数据(choice data)的Logit和probit模型,用于计数类数据(count data)的poisson模型。这些模型回归元的值可用effects获得并可视化。
ž 负二项广义线形模型可由MASS包的glm.nb()实现。aod包提供了负二项模型的另一个实现,并包含过度分散数据的其它模型。
ž 边缘(zero-inflated)和hurdle计数模型可由pscl包提供。
ž 多项响应(Multinomial response):特定个体协变量(individual-specific covariates)多项模型只能由nnet包中multinom()函数提供。mlogit包实现包括特定个体和特定选择(choice-specific)变量。多项响应的广义可加模型可由VGAM包拟合。针对多项probit模型的贝叶斯方法由MNP包提供,各种贝叶斯多项模型(包括logit和probit)在bayesm包中可得。
ž 顺序响应(Ordered response):顺序响应的比例优势回归由MASS包中polr()函数实现。包ordinal为顺序数据(ordered data)提供包括比例优势模型(propotional odds models)以及更一般规范的累积链接模型(cumulative link models)。贝叶斯顺序probit模型由包bayesm提供。
ž 删失响应(Censored response):基本删失回归模型(比如,tobit模型)可以由survival包中的suevreg()函数拟合,一个便利的接口tobit()在AER包中。更深入的删失回归模型,包括面板数据的模型,由censReg包提供,样本选择的模型在sampleSelection包中可得。
ž 杂项:有关微观计量经济学得进一步精细工具由micEcon族包提供:Cobb-Douglas分析、translog、二次函数在micEcon里;规模弹性不变(Constant Elasticity of Scale,CES)函数在micEconCES里;对称归一二次利润(Symmetric Normalized Quadratic Profit,SNQP)函数在micEconSNQP里;几乎理想的需求函数模型系统(Almost Ideal Demand System ,AIDS)函数在micEconAids包里;随机前沿分析(Stochastic Frontier Analysis)在frontier包中;bayesm包执行微观计量济学和营销学(marketing)中的贝叶斯方法;相对分布推断在包reldist里。
其它的回归模型(Further regression models)
ž 非线性最小二乘回归建模可用stats包里的nls()实现。
ž 分位数回归(Quantile Regression):quantreg(包括线性、非线性、删失、局部多项和可加分位数回归)。
ž 面板数据的线性模型:plm。一个空间面板模型的包(splm)正在R-Forge开发。
ž 广义动量方法(Generalized method of moments,GMM)和广义实证似然(generalized empirical likelihood,GEL):gmm。
ž 线性结构方程模型:sem,包括两阶段最小二乘。
ž 联立方程估计:systemfit。
ž 非参核方法:np。
ž Beta回归:betareg和gamlss
ž 截位(高斯)回归:truncreg。
ž 非线性混合效应模型:nlme和lme4。
ž 广义可加模型:mgcv、gam、gamlss和VGAM。
ž 杂项:包VGAM、Design和Hmisc包提供了若干(广义)线性模型处理的扩展工具,Zelig是一个针对很多种回归模型的易于使用的统一接口。
基本的时间序列架构(Basic time series infrastructure)
ž stats包的“ts” 类是R的规则间隔时间序列的标准类(尤其是年度、季度和月度数据)。
ž “ts”格式的时间序列可以与zoo包中的“zooreg” 强制互换,而不丢失信息。zoo包规则和不规则间隔时间序列的架构(后者通过类“zoo”),其中时间信息可以是任意类。这包括日间序列(典型地,以“Date”时间索引)或日内序列(例如,以“POSIXct”时间索引)。
ž 建立在“POSIXt”时间-日期类上的its、tseries和timeSeries(前fSeries)包也提供不规则间隔时间序列的架构,特别用于金融分析。
时间序列建模(Time series modelling)
ž stats包里有经典的时间序列建模工具,arima()函数做ARIMA建模和Box-Jenkins-type分析。
ž stats包还提供StructTS()函数拟合结构时间序列。
ž 可以用nlme包中的gls()函数经由OLS拟合含AR误差项的线性回归模型。
ž 时间序列的滤波和分解可以用stats 包的decompose() 和HoltWinters() 函数。
ž 这些方法的扩展,尤其是预测和模型选择,在forecast 包里。
ž mFilter 里有各种各样的时序滤波方法。
ž 估计向量自回归(VAR)模型,有若干方法可用:简单模型可用stats 包里ar()拟合,vars 包提供更精巧的模型,dse 中的estVARXls()和贝叶斯方法在MSBVAR 中。dynlm包有一个经由OLS拟合动态回归模型的方便接口,dyn实现了一个用于其它回归函数的不同方法。
ž 可以用dse拟合更高级的动态方程组。
ž tsDyn 提供各种非线性自回归时序模型。
ž 高斯线性状态空间模型可用dlm 拟合(通过最大似然、卡尔曼滤波/平滑和贝叶斯方法)。
ž 包urca、tseries和CADFtest提供了单位根和协整技术。
ž 时间序列因子分析在tsfa 包里。
ž 包sde提供随机微分方程的模拟和推断。
ž 非对称价格传导建模在apt包中。
杂项
ž 矩阵操作(Matrix manipulations)。作为一个向量和矩阵语言,R有许多基本函数处理矩阵,与Matrix和SparseM包互补。
ž 放回再抽样(Bootstrap)。除了推荐的boot包,bootstrap或simpleboot包里有一些其它的常规bootstrapping技术;还有些函数专门为时间序列数据而设计,如:meboot包里的最大熵bootstrap,tseries包里的tsbootstrap()函数。
ž 不平等(Inequality)。为了测量不平等(inequality),集中(concentration)和贫穷(poverty),ineq包提供了一些基本的工具,如:劳伦茨曲线(Lorenz curves),Pen's parade,基尼系数(Gini coefficient)。
ž 结构变化(Structural change)。R有很强的处理参数模型的结构变化和变化点的能力,可参考strucchange和segmented包。
数据集(Data sets)
ž Packages AER和Ecdat包含许多来自计量经济学教科书和杂志(应用计量经济学,商业/经济统计)的数据集。
ž AER另外提供大量例子再现来自教材和文献的分析,演示各种计量经济学方法。
ž FinTS 是Tsay的《Analysis of Financial Time Series》(2nd ed., 2005, Wiley)一书的R参考,包含运行其中一些例子所需的数据集、函数和脚本。
ž DNmoney包提供加拿大货币流通额。
ž pwt包提供佩恩世界表(Penn World Table)。
ž 包expsmooth、fma和Mcomp分别是《Forecasting with Exponential Smoothing: The State Space Approach》(Hyndman, Koehler, Ord, Snyder, 2008, Springer)、《Forecasting: Methods and Applications》(Makridakis, Wheelwright, Hyndman, 3rd ed., 1998, Wiley)和《the M-competitions》的时间序列数据包
ž 包erer包含《Empirical Research in Economics: Growing up with R》(Sun, forthcoming)一书中的函数和数据集。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28