 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		如何锻炼出强悍的分析能力
这个问题问的是如何锻炼出强悍的分析能力——那我确实蛮适合回答的。 先放结论:培养强悍的分析能力这个事儿,我的建议是: 1.学一门学科:信息分析; 2.入门几个关键学科,多了解几种分析范式; 3.掌握信息分析的基本工具与方法; 1.学一门学科:信息分析 有很多人谈到的提高分析能力的方法,大都玄乎其玄,说的跟成功学一样——为什么不好好坐下来,专门学一门讲求分析的非常正规的学科呢? 是的,这门正规的、专讲分析的学科就叫做:信息分析。(李彦宏学的“信息管理”这个专业,其核心课程,也就是信息分析) 这门学科主要讲什么? 如其名,主要讲的就是对信息进行分析,当然,你也可能在别的地方听过它的其它的高大上的名字,包括:经济分析、经济预测、市场分析;情报分析、情报调研、情报研究;社会调查、舆情分析、未来研究等。 支撑这门学科的思想,也横贯了逻辑、统计、博弈论、心理学、经济学、管理学、控制论等重要学科。这门学科当然也不是讲玄乎的理论的,而是非常注重方法、术、手段、推理的。
	 
 
为什么必须要学这门学科? 因为: (1).所有的分析过程,总的来说,都是对信息的处理、分析,而这门学科,便是主讲信息分析的; (2).正规、学术化,有着顶尖专家的研究,集结了前人的智慧,不会像一些成功学一样吹牛逼; (3).讲求方法、术,稳准狠,但是又注重体系化,学了不会走火入魔,而是了解到人的局限、世界的复杂,不会跟个中二青年一样,天天觉得自己掌握了趋势。 学了之后还可以分析能力还可以进阶吗? 当然可以,进阶有两个两个方面:一个是结合别的学科,比如经济学、管理学,国际政治学等,提高自己在特定领域的分析能力;一个是培养自己对纯信息分析的分析能力,比如数据挖掘与分析的能力。 2.入门几个关键学科,多了解几种分析范式 一方面:每一门学科都有着自己的研究经验、研究范式,仔细学习,能收获好多关于如何分析的思想和方法;另一方面,每一门学科内有自己的定义架构,了解这个定义架构,有助于理解定义架构下的世界,从而提高自己的分析能力。 (1).“定义架构” 定义架构指的是,每一门学科里面,都有一些既成的组织化的定义,确定了什么现象是什么,区分了事物的边界和联系,好比是一副有色眼镜,戴上它,世界会清晰好多。 比如你要去做经济分析,你肯定要了解经济学,不要重复去造轮子,自己再去定义什么现象叫什么,这样得不偿失,而且,往往还会导致:你以为你发现了真理,其实你只是换了个说法说明了一些早已被证明是错误的东西罢了。 (如果用编程的说法来说的话,这些定义架构就好比是前人已经写好的库和模块,已经很好用了,就不要重复去造轮子。(当然,你也可以重造,但是,你认为你是想成为开天辟地的大师还是一个分析者?)) (2).要入门哪些学科? 要入门学科包括:心理学(大多数分析,其核心都是在分析人);经济学(描述了这个世界的运行);社会学(有一套自有的话语范式与研究成果)。
具体更完整的我推荐看一下我的答案:对于世界的抽象认识与复杂性研究,你有哪些心得和书籍推荐? 3.掌握信息分析的基本工具与方法 基础打牢了,方法学会了,只会出去跟出租车司机吹会儿牛逼能行吗?我们要做出成果,并且在做出成果的过程中,磨练自己的思想、体会分析的方法,乃至作出创新。 (1).初阶版:脑图工具+文本工具 这些脑图、结构图的工具,各个平台上都有很多,我一般喜欢在ipad与PC平台上面使用: ipad:Mindly,Mindo,iThoughts; PC:Edraw Max,MindManager; 这些脑图、流程图的工具很多,你可以自己选择自己喜欢的。 文本工具就是说,要培养自己的写写画画的能力,让自己具有结构分析的思维和能力。
在这里推荐一本《金字塔原理》 (2).进阶版:Office 进阶版就是excel+ppt+word这些东西,因为一个人的分析,不仅仅是在脑子里面分析了就完了,还要呈现出来,得到反馈。 (3).高阶版:python+各种模块+数据分析与挖掘软件 学会python,结合它的强悍的数据分析能力与各种模块、库、工具(比如ipython,scipy,numpy模块,PyGt等),然后最好系统地学一下统计学,以及SPSS软件,Orange Canvas等,把自己从一个信息分析的票友变成专业的分析人员吧! 其中,关于python的一个答案:大学里 C++ 课程听不懂,但是想当程序员,还有希望么? 写完了,
总结与延伸一下: (1).如果说只是培养较好的分析能力,那么你看几本信息分析方面的书就好了,(比如:信息分析 (豆瓣),信息分析与预测 (豆瓣),信息分析与决策 (豆瓣),建议到图书馆里面去找,专业的信息分析书籍有很多)这里面讲了很多直接可以用但又发人深省的方法,好好学习一下,分析能力肯定是可以提升的; (2).如果说是要培养强悍的分析能力,那么请入专业分析的大坑。 (3).较好的分析能力与强悍的分析能力的差别:较好的分析就是在脑子里面分析有限的事实与数据,对于大量的数据、超出人类直觉的东西,往往束手无策(这世界上大部分事件,都是超出人脑的处理能力的);强悍的分析能力则更要求专业化,借助更多专业工具,更讲求稳准狠。 目前,我也走在成为分析高手的路上,与诸位共勉!
 
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21