
如何锻炼出强悍的分析能力
这个问题问的是如何锻炼出强悍的分析能力——那我确实蛮适合回答的。 先放结论:培养强悍的分析能力这个事儿,我的建议是: 1.学一门学科:信息分析; 2.入门几个关键学科,多了解几种分析范式; 3.掌握信息分析的基本工具与方法; 1.学一门学科:信息分析 有很多人谈到的提高分析能力的方法,大都玄乎其玄,说的跟成功学一样——为什么不好好坐下来,专门学一门讲求分析的非常正规的学科呢? 是的,这门正规的、专讲分析的学科就叫做:信息分析。(李彦宏学的“信息管理”这个专业,其核心课程,也就是信息分析) 这门学科主要讲什么? 如其名,主要讲的就是对信息进行分析,当然,你也可能在别的地方听过它的其它的高大上的名字,包括:经济分析、经济预测、市场分析;情报分析、情报调研、情报研究;社会调查、舆情分析、未来研究等。 支撑这门学科的思想,也横贯了逻辑、统计、博弈论、心理学、经济学、管理学、控制论等重要学科。这门学科当然也不是讲玄乎的理论的,而是非常注重方法、术、手段、推理的。
为什么必须要学这门学科? 因为: (1).所有的分析过程,总的来说,都是对信息的处理、分析,而这门学科,便是主讲信息分析的; (2).正规、学术化,有着顶尖专家的研究,集结了前人的智慧,不会像一些成功学一样吹牛逼; (3).讲求方法、术,稳准狠,但是又注重体系化,学了不会走火入魔,而是了解到人的局限、世界的复杂,不会跟个中二青年一样,天天觉得自己掌握了趋势。 学了之后还可以分析能力还可以进阶吗? 当然可以,进阶有两个两个方面:一个是结合别的学科,比如经济学、管理学,国际政治学等,提高自己在特定领域的分析能力;一个是培养自己对纯信息分析的分析能力,比如数据挖掘与分析的能力。 2.入门几个关键学科,多了解几种分析范式 一方面:每一门学科都有着自己的研究经验、研究范式,仔细学习,能收获好多关于如何分析的思想和方法;另一方面,每一门学科内有自己的定义架构,了解这个定义架构,有助于理解定义架构下的世界,从而提高自己的分析能力。 (1).“定义架构” 定义架构指的是,每一门学科里面,都有一些既成的组织化的定义,确定了什么现象是什么,区分了事物的边界和联系,好比是一副有色眼镜,戴上它,世界会清晰好多。 比如你要去做经济分析,你肯定要了解经济学,不要重复去造轮子,自己再去定义什么现象叫什么,这样得不偿失,而且,往往还会导致:你以为你发现了真理,其实你只是换了个说法说明了一些早已被证明是错误的东西罢了。 (如果用编程的说法来说的话,这些定义架构就好比是前人已经写好的库和模块,已经很好用了,就不要重复去造轮子。(当然,你也可以重造,但是,你认为你是想成为开天辟地的大师还是一个分析者?)) (2).要入门哪些学科? 要入门学科包括:心理学(大多数分析,其核心都是在分析人);经济学(描述了这个世界的运行);社会学(有一套自有的话语范式与研究成果)。
具体更完整的我推荐看一下我的答案:对于世界的抽象认识与复杂性研究,你有哪些心得和书籍推荐? 3.掌握信息分析的基本工具与方法 基础打牢了,方法学会了,只会出去跟出租车司机吹会儿牛逼能行吗?我们要做出成果,并且在做出成果的过程中,磨练自己的思想、体会分析的方法,乃至作出创新。 (1).初阶版:脑图工具+文本工具 这些脑图、结构图的工具,各个平台上都有很多,我一般喜欢在ipad与PC平台上面使用: ipad:Mindly,Mindo,iThoughts; PC:Edraw Max,MindManager; 这些脑图、流程图的工具很多,你可以自己选择自己喜欢的。 文本工具就是说,要培养自己的写写画画的能力,让自己具有结构分析的思维和能力。
在这里推荐一本《金字塔原理》 (2).进阶版:Office 进阶版就是excel+ppt+word这些东西,因为一个人的分析,不仅仅是在脑子里面分析了就完了,还要呈现出来,得到反馈。 (3).高阶版:python+各种模块+数据分析与挖掘软件 学会python,结合它的强悍的数据分析能力与各种模块、库、工具(比如ipython,scipy,numpy模块,PyGt等),然后最好系统地学一下统计学,以及SPSS软件,Orange Canvas等,把自己从一个信息分析的票友变成专业的分析人员吧! 其中,关于python的一个答案:大学里 C++ 课程听不懂,但是想当程序员,还有希望么? 写完了,
总结与延伸一下: (1).如果说只是培养较好的分析能力,那么你看几本信息分析方面的书就好了,(比如:信息分析 (豆瓣),信息分析与预测 (豆瓣),信息分析与决策 (豆瓣),建议到图书馆里面去找,专业的信息分析书籍有很多)这里面讲了很多直接可以用但又发人深省的方法,好好学习一下,分析能力肯定是可以提升的; (2).如果说是要培养强悍的分析能力,那么请入专业分析的大坑。 (3).较好的分析能力与强悍的分析能力的差别:较好的分析就是在脑子里面分析有限的事实与数据,对于大量的数据、超出人类直觉的东西,往往束手无策(这世界上大部分事件,都是超出人脑的处理能力的);强悍的分析能力则更要求专业化,借助更多专业工具,更讲求稳准狠。 目前,我也走在成为分析高手的路上,与诸位共勉!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18