
谷歌启动了一个名为Baseline Study的全新科研项目,希望全面描绘健康人的身体究竟应该是何模样。
为了完成这一项目,谷歌将从175人那里匿名搜集基因和分子信息,之后还会再搜集数千人的相关数据。
该项目目前还处于发展初期,由50岁的分子生物学家安德鲁·康拉德(Andrew Conrad)负责。他曾经开创了便于广泛开展且成本低廉的HIV测试方式,用于对捐赠的血浆进行检测。
康纳德2013年3月加盟Google X,他已经组建了一个由70至100人组成的团队,涵盖的领域包括生理学、生物化学、光学、成像学和分子生物学。
虽然目前还有很多大型的医疗和基因研究项目存在,但Baseline搜集的信息数量更大,范围更广。他们希望帮助研究人员更早地发现心脏病和癌症的各种迹象,进而推广预防措施,而不仅仅把精力放在治疗上。
该项目并不局限于具体的疾病,而是会使用各种全新的诊断工具搜集成百上千的不同样本。之后,谷歌便会利用其庞大的计算能力来寻找这些信息中隐藏的“生物标签”,从而帮助医疗研究人员提前发现疾病。
例如,该研究可能会发现一些能够帮助人们分解高脂肪食物的生物标签。拥有这些生物标签的人,可以将患上高胆固醇和心脏病的时间延后,没有这类生物标签的人则会更早患上心脏病。一旦Baseline发现了这一标签后,研究人员便可通过检查了解哪些人缺乏这类标签,并帮助他们纠正习惯,或者开发出新的治疗方法,帮助其更好地分解高脂肪食物。
谷歌拥有当今全球规模最大的电脑网络和数据中心,可以迅速提供搜索结果和视频服务。这同样可以用于存储和分析医疗信息。
目前为止,多数已经发现的生物标签都与晚期疾病有关,因为这种研究普遍集中于病人。因此,利用现有数据尽早判断疾病的效果不佳。研究人员认为,这一新项目将成为一次意义重大的跨越,因为人体太过复杂,而科学家目前对于DNA、酶和蛋白质之间的相互作用,以及饮食等环境因素对人体的影响都知之甚少。而此次研究可以为科学家提供更多信息。
谷歌表示,Baseline将采用匿名方式进行,搜集的数据也仅限于医疗目的。这些数据不会与保险公司分享。
尽管如此,此事还是引发了很大的担忧。这些数据今后将为保险公司带来巨大的价值,他们一直以来都希望通过各类信息降低风险。除此之外,还有人可能会在招聘和结婚时参考相关数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02