京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何踏上人工智能与数据科学之路(机器学习篇)
如何打开机器学习的大门
AI这个词相信大家都非常熟悉了,在几年人公智能圈子格外热闹,先是阿法狗带了个好头,让大家重新对人工智能刮目相看。能取得今天这样的成绩绝非瞬间的爆发而是多少年日益的积累。今天咱们就来唠一唠如何进军人工智能的第一步-机器学习。
我选Python玩AI:
Python语言已经非常火爆了,有句古话说得好,人生苦短,我用Python。在机器学习这个领域Python已经成为了主流,一方面因为这门语言简直太简单了,就我个人而言我搞过C++也玩过JAVA但是学起来用起来相对来说都比较难(说白了。。。就是我比较懒),但是python用起来简直不要太轻松,这也是推荐新手选择python的原因,非常容易上手,决没有恶心到家的指针。另一方面现在无论是做项目还是搞研究都非常追求效率,绝大多数情况下,很多代码都不需要自己从头到尾实现,而是调用已经非常完善的库了,这也是我觉得python最强大的地方,可以很轻松的安装好一个想用的库,用这些库帮助我们解决问题。
对于刚入门的同学来说,肯定不会自己动手一步一步的去实现所有需要的技术代码,一个最直接的学习方法就是结合开源的框架,那么可以说机器学习和深度学习的开源框架基本都是python接口的,能用这些开源框架是我们学习的一个最基本的手段啦,所以重要的事情说三遍,python!python!python!
Python科学计算库-Numpy
说到机器学习,简单来说就是,数据输入进来,然后得出一个想要的结果。那么在中间我们计算的是什么呢,为了计算的高效和方便,通常都是将数据转换成矩阵的形式,也就是行作为样本,列作为特征。那么这些复杂的矩阵计算我们该怎么样完成呢?这里我们就需要Numpy了,它可以帮助我们很轻松的完成一系列的计算。如果你要跟数据打交道,那么Nmupy你肯定离不开了。
Python数据分析处理库-Pandas
在做任何一个机器学习算法之前都需要对数据进行预处理,也就是说数据是不纯净的,首先我们需要提取特征,再去除一些错误的有问题的样本,那么这些该快速完成呢,如果你喜欢偷懒要快速做完这些苦活,那么Pandas将会是一个非常不错的选择,在这里,你只需要简单的几行代码就可以对数据做好预处理的操作。
Python数据分析处理库-Matplotlib
数据分析和机器学习都离不开可视化展示,因为无论是做项目交付还是搞算法研究,都需要对自己的成果心里有个数吧,那么在这里我们就可以用Matplotlib来完成这个事,还是简单的几行代码,就能把结果轻松展示出来。
Python机器学习库-Scikit-Learn
这个武器十分有杀伤力,它就是我们机器学习必备的家伙,在这里我们可以选择任何你喜欢的机器学习算法,然后把数据输入进来,直接RUN就可以迭代计算了,简单太自动了,这个库十分强大,封装了大量机器学习算法以及评估和预处理等操作。轻轻松松几行,一个复杂的机器学习算法已经在跑了。
数据与实战
在机器学习这条路上,我们一定会跟数据打交道,这里十分推荐大家找一些真是的案例数据,用这些python库来实际的玩一玩。因为这些库都是开源的,咱们也可以自己打一些断点,从流程上一步一步走完整个机器学习的算法。
有很多同学都问过我,基础很一般能入门机器学习吗,听说机器学习对数学的要求很高,这该怎么办呀?说实话机器学习就是数学公式组成的,但是如果不搞科研的话我觉得能把流程和应用搞懂已经足够用了,并不推荐新手直接从数学开始进军,因为我觉得这个活太枯燥了,不见得大家都能有这种持之以恒的毅力坚持住。我觉得可以从案例和应用下手,先了解算法从头到尾做了一件什么事以及能用在什么地方,再回过头来去搞算法的推导效果应该会更好的、
学习路线图
这个路线图是针对咱们要入门的同学制定的,已然成神的同学们可不使用哦。
(一)搞定Python:
千万别花个把个月转攻这个,因为语言只是一个工具,我们完全可以边用边学,建议快速掌握基本语法,边练边学。
(二)机器学习算法:
机器学习有很多经典的算法,咱们不妨从最简单的K近邻开始,用python实现出这些经典的机器学习算法从流程的角度熟悉这些算法的原理。
(三)熟悉这些库:
如果大家想精通这些库,我觉得难度还是蛮大的,不妨先熟悉这些库能做什么,等咱们实际用的时候再去查语言就完全来得及。因为我用了这么久大部分函数还得每次用的时候现查,即便我知道该这么用还是会不放心查一查。
(四)案例与实战:
用真实数据来玩算法是学习的最好方式。咱们可以找一些真实的数据来练练这些机器学习算法,先搞定算法的原理,再把数据应用进去,然后就是一步一步debug完成整个项目。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15