京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代来临 多角度展示信息革命图景
大数据”为时下最火热词汇之一。从拥有数据到预判需求,这就是大数据的“威力”,近几年各互联网巨头、软件公司纷纷涉足该领域,一场以“大数据”为核心驱动的信息革命,风生水起,席卷而来。

的确,大数据正以前所未有的速度颠覆人们探索世界的方法,正在引起社会、经济、学术、科研、国防、军事等领域的全球性变革。“数据”作为企业和公共组织越来越重要的资产,将历史性地改变着企业资产的理念和发展进程,大数据的思想、模式、技术和产业开始真正地形成。本版从大数据时代演变进程,大数据在各主要领域的运用和发展,我国政府出台的大数据相关重大产业政策,以及大数据概念股在资本市场的表现等四角度,对大数据进行全面梳理分析,展示一幅真实的大数据图景,以飨读者。
什么是大数据,大数据有什么特点呢?
大数据也称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、处理、并整理成为帮助企业更好经营决策的各种资讯,同时与大数据相关的数据存储、数据安全、数据分析等领域也都属于大数据范畴。
大数据的特点有三个层面:第一、数据体量巨大、类型繁多,包括文字、视频、图片、甚至人们的行为、位置和身体生理数据都可作为被记录和分析的数据;第二、大数据在预测时接受所有市场数据,正是因为统计数据的全面性、整体性才获取传统数据时代不可能获取的知识,得到过去无法企及的商机,但也存在价值密度低,商业价值高的问题。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第三、数据处理速度快且具及时性。例如,当你在当当网上选购一本经济类书时,网站会自动帮你选择类似你可能喜欢的书籍。
大数据产生的大背景为二十世纪末期与二十一世纪初期互联网的快速发展。据美国互联网数据中心指出,互联网上的数据每年将增长50%,而目前世界上90%以上的数据是最近几年才产生的。此外,数据又并非单纯指人们在互联网上发布的信息,全世界的工业设备、汽车、电表上有着无数的数码传感器,随时测量和传递着有关位置、运动、震动、温度、湿度乃至空气中化学物质的变化,这些也都产生了海量的数据信息。
大数据技术的战略意义不仅在于掌握庞大的数据信息,同时需要对这些含有意义的数据进行专业化处理,通过“加工数据”,实现数据的“增值”,从而为企业带来盈利,这也是大数据要发展的关键所在。因此,数据仓库、数据安全、数据分析、数据挖掘等围绕大数据商业价值的利用逐渐成为当前企业争相追捧的利润焦点。
大数据的影响除了经济方面的,它同时也能在政治、文化等方面产生深远的影响。在数据大爆炸下,怎样挖掘这些数据并从中获取利润,企业面临着技术与商业的双重挑战。
首先,如何将数据信息与产品和人相结合,达到产品或服务优化是大数据商业化运用的挑战之一。腾云天下数据挖掘总监张夏天认为,大数据对算法和计算平台的挑战加大,计算开销量大增。但随着云计算的快速发展,将减少大数据需要大量计算的发展瓶颈。
其次,大数据相关企业发展的关键还是在于谁先拥有数据,大数据时代最终大部分的价值还是必须从数据本身中挖掘。对于腾讯、百度这样的互联网巨头企业,在开发大数据为企业获得利润方面,具有先天的数据资源优势。
最后,从市场角度来看,大数据还面临其他因素的挑战。市场中数据噪音太多,会导致数据价值大大降低。以无线营销为例,大量的刷量以及“水军”好评差评等数据已经严重干扰了数据的准确性,这实际上大大降低了数据的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27