使用R对共线性检验
高维数据常会出现共线性 、变量选择等问题 。如何消除共线性确定最佳模型,是回归分析的一个重点。 传统的最小二乘估计在处理多重共线性问题上 往往有令人不太满意的地方, 主要有两点: 一是 预测准确性,二是模型可解释性。 目前处理严重共线性的常用方法有以下几种: 主成分回归、逐步回归、岭回归等, 这些方法有各自的优缺点 多重共线性的Lasso 方法兼有子集选择和岭估计的优点,同时进行变 量选择与未知参数估计。选择最佳模型的标准有 Cp、AIC、BIC准则,它们也有各自的适用范围。(Mallows Cp 统计量用来作为逐步回归的判停规则,对于一个好的模型,它的Cp统计量非常接近于模型的参数数目)
Robert
Tibshirani (就是R中MASS以及 The Elements of Statistical Learning的作者之一)于 1996
年提出了一种新的变 量选择技术Lasso,即 Least Absolute Shrinkage and Selection Operator
就是翻译过来颇显别扭的套索回归, lasso方法用模型系数的绝对值 函数作为惩罚来压缩模型系数,使一些回归系数变
小,甚至使一些绝对值较小的系数直接变为0 。
本文先从普通回归说起:
R语句如下
[plain] view plain copy
library(car)
D=read.csv("/Users/Documents/train_test_model/ridgereg1.csv",sep=",") # 加载数据
a=lm(y~., data=D);summary(a) # 定义模型,summary为输出汇总
vif(a) # 输出模型汇总
得到一下拟合检验参数
[plain] view plain copy
Call:
lm(formula = y ~ ., data = D)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 11.011694 1.718393 6.408 4.94e-06 ***
long 1.692736 0.369589 4.580 0.000232 ***
touwei -2.158831 0.535513 -4.031 0.000783 ***
weight 0.007472 0.001144 6.531 3.87e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.163 on 18 degrees of freedom
Multiple R-squared: 0.9754, Adjusted R-squared: 0.9713
F-statistic: 238.1 on 3 and 18 DF, p-value: 1.14e-14
long
200.013181140721
touwei
209.429825510575
weight
9.68788132590006
通过vif方差膨胀因子可以知道上面三个变量存在严重的共线性,有书中规定超过10就算存在严重共线性同时分析回归系数,婴儿的头围越大,年龄应该越大才对,不应该是负向预测关系,从这里也可以看出一些端倪以上是我们依据数据诊断出多元回归中自变量存在严重共线性,当然在spss中也是可以直接选择,杜宾-瓦特森检验,也是统计分析中常用的一种检验序列一阶自相关最常用的方法。所以不能直接使用常规ols方法。于是请看下面的解决办法。#我们进一步的对检测回归分析的另一个前提--即方差齐性
[plain] view plain copy
library(MASS)
install.packages("gvlma") #导入gvlma包
library(gvlma)
gvmodel <- gvlma(a)
summary(gvmodel)
得到如下参数
[plain] view plain copy
Call:
lm(formula = y ~ ., data = D)
Residuals:
Min 1Q Median 3Q Max
-1.87262 -0.69499 -0.09376 0.74618 2.80676
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 11.011694 1.718393 6.408 4.94e-06 ***
long 1.692736 0.369589 4.580 0.000232 ***
touwei -2.158831 0.535513 -4.031 0.000783 ***
weight 0.007472 0.001144 6.531 3.87e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Call:
gvlma(x = a)
Value p-value Decision
Global Stat 6.6421 0.15605 Assumptions acceptable.
Skewness 0.7794 0.37733 Assumptions acceptable.
Kurtosis 0.1147 0.73484 Assumptions acceptable.
Link Function 1.7108 0.19088 Assumptions acceptable.
Heteroscedasticity 4.0372 0.04451 Assumptions NOT satisfied!
可以得出,异方差性违反,也违反了普通最小二乘建模的前提。如果还是不死心,我们来看看残差分析吧。
#建模试试,看是否存在异常
[plain] view plain copy
lm.sol<-lm(y~.,data=D)
summary(lm.sol)
#可视化,残差与预测散点图
plot(fitted(lm.sol), resid(lm.sol),
cex=1.2, pch=21, col="red", bg="orange"
xlab="Fitted Value", ylab="Residuals")
当描绘的点围绕残差等于0的直线上下随机散布,说明回归直线对原观测值的拟合情况良好。否则,说明回归直线对原观测值的拟合不理想。
在标准化残差图中,大约有95.45%的残差在-2到+2之间 同时,也可以识别异常点,标准化残差小于-3或者大于+3时,就可以判断为异常值。
那么最后大概是可以相信这个模型用最小二乘法是并不合适。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03