
R语言实用小技巧
这篇文章介绍的是我平时写程序遇到的各种小问题,以及解决他们的小技巧
1.R语言读取EXCEL
用R语言读取EXCEL时,可以使用readxl包的read_excel函数,不要使用xlsx这个包,因为xlsx它要加载JAVA,很麻烦,而使用readxl不需要加载JAVA。
2.如何在R中构造一个hash函数
这在R中或许有许多包能够实现,但是,其实我们自己来实现也是很简单的,要知道environment的原理也是一个hash函数,我们只需要利用environment,来负责存储我们所需要的映射列表就可以了。接下来我们可以利用digest包的散列函数digest(),这个函数可以将任意的R对象映射为一个md5值,或者sha1等,他的md5值就是我们所需要的key,以下是使用例子:
有如下这样的数据
> df<-data.frame(x=1:4,y=2:5,z=3:6,k=4:7)
> df
x y z k
1 1 2 3 4
2 2 3 4 5
3 3 4 5 6
4 4 5 6 7
假设我想将x,y映射到z,将y,z映射为k,先定义两个函数,一个是SetKeyValue,负责设置key,value对,第二个是GetValue,输入一个key,返回key对应的value。
library(digest)
SetKeyValue<-function(envir,key,value){
envir[[digest(key)]]<-value
return(envir)
}
GetValue<-function(envir,key){
return(envir[[digest(key)]])
}
hash<-new.env()
for(i in 1:nrow(df)){
hash<-SetKeyValue(hash,df[i,1:2],df[i,3])
hash<-SetKeyValue(hash,df[i,2:3],df[i,4])
}
这样我们就得到了一个由environment构造的hash函数了,我们可以这样去得到值:
> GetValue(hash,df[1,1:2]) #得到当x=1 y=2时的z值
[1] 3
当然,如果想要更快的速度,可以使用fastdigest这个包,里面的散列函数比digest包要快,只需将digest()替换成fastdigest()就可以了。
3.如何用最快最简单的方法加快R的执行速度?
答案是使用compiler包,这个包的作用就是将R代码编译成字节码,这在很多情况下都能加快运行的速度,当然也会有一些时候作用没有那么大,使用非常简单,以下是一个使用例子:
> library(microbenchmark)
> library(compiler)
> f1<-function(){
+ x=1:100
+ for(i in 1:100){
+ x[i]=x[i]+1
+ }
+ }
> f2<-function(){
+ x=1:100
+ x+1
+ }
> f3<-cmpfun(f1)
> f4<-cmpfun(f2)
> microbenchmark(
+ f1(),
+ f2(),
+ f3(),
+ f4()
+ )
Unit: nanoseconds
expr min lq mean median uq max neval cld
f1() 170077 175453 178277.64 177652 179363 227746 100 c
f2() 978 1467 2028.94 1956 2444 5865 100 a
f3() 11730 12219 12873.79 12708 13196 20039 100 b
f4() 978 1466 1564.65 1467 1955 2933 100 a
可以看到编译后的f3,f4跟编译前的f1,f2,快了将近2倍到10倍,这么简单就能提升运行速度,何乐而不为呢?
我写的一个小代码,可以批量地把环境变量中所有的函数都编译一次:
funlist<-c(lsf.str())
for(f in funlist){
assign(f,cmpfun(get(f)))
}
如何想要更快,可以参考Windows使用OpenBLAS加速R语言计算速度
4.如何读取一个文件夹所有的文件?
我们可以利用list.files进行匹配,通过其中参数pattern可以填写正则表达式,用来匹配文件夹下满足条件的文件名。然后再利用lapply来导入文件。
filenames <- list.files("C:/Users/qj/Desktop/demo_data/", pattern = ".txt")
datalist <- lapply(filenames, function(name) {
read.table(paste0("C:/Users/qj/Desktop/demo_data/", name),sep=',',header = T)
})
5.如何把data.frame按照行来对应生成列表
> set.seed(1)
> df <- data.frame(i=3:1, y = runif(3))
> df
i y
1 3 0.2655087
2 2 0.3721239
3 1 0.5728534
我想把这个data.frame变成一个list 并且i要与list中的序号对应。
解决方法如下:
> i=df$i
> df=df[,2]
> dflist<-split(df,i)
> names(dflist)<-NULL
> dflist
[[1]]
[1] 0.5728534
[[2]]
[1] 0.3721239
[[3]]
[1] 0.2655087
6.如何标记每个组别中出现的次数,他们出现的顺序。
有这么个数据:
> df=data.frame(group=c(1,1,2,2,3,3,3))
> df
group
1 1
2 1
3 2
4 2
5 3
6 3
7 3
现在想添加一列,标记的id列,让它变成:
group id
1: 1 1
2: 1 2
3: 2 1
4: 2 2
5: 3 1
6: 3 2
7: 3 3
可以利用data.table实现:
> dt<-data.table(df)
> dt[,id:=1:.N,by=group]
> dt
group id
1: 1 1
2: 1 2
3: 2 1
4: 2 2
5: 3 1
6: 3 2
7: 3 3
7.R语言读取SPSS格式文件
可以使用library(memisc)这个包,虽然foreign也能做到,但是有的时候格式会很混乱,而memisc就可以完美读取。
8.R语言for循环的小贴士
看一个例子,这个例子是一个简单的for循环,它在大部分情况下是没有任何问题的。
n=nrow(x)
for(i in 1:n){
x[i]
}
但是如果当x是一个空值时,这就会出问题了,当x是空值时,我们并不希望这个for循环会执行,但是在这里n=0,那么i in 1:0 就会产生1和0,这就会导致出现各种各样的错误,而且这些错误并不固定,它会随着你的for循环里面的内容改变而改变,从而很难定位bug的所在。一个解决的方法是,我们可以使用seq.int(length.out = n)循环来代替1:n
n=nrow(x)
for(i in seq.int(length.out = n)){
x[i]
}
这样当n=0的时候,这个循环就不会执行了。
9.使用foreach包并行计算时看到里面print的方法
在linux的时候,我们可以在makeCluster上加上outfile="" 使用""就会默认输出到控制台,不过这个功能在windows好像不能用,在windows的时候建议输出到文件里,outfile="d:/log.txt",这样就可以了。
library(parallel)
library(foreach)
library(doParallel)
cl<-makeCluster(2,outfile="d:/log.txt") #work for windows
cl<-makeCluster(2,outfile="") #work for linux
registerDoParallel(cl)
x <- foreach(i=1:100,.combine = rbind,.inorder = F) %dopar% {
print(i)
sqrt(i)
}
stopCluster(cl)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08