
R语言实用小技巧
这篇文章介绍的是我平时写程序遇到的各种小问题,以及解决他们的小技巧
1.R语言读取EXCEL
用R语言读取EXCEL时,可以使用readxl包的read_excel函数,不要使用xlsx这个包,因为xlsx它要加载JAVA,很麻烦,而使用readxl不需要加载JAVA。
2.如何在R中构造一个hash函数
这在R中或许有许多包能够实现,但是,其实我们自己来实现也是很简单的,要知道environment的原理也是一个hash函数,我们只需要利用environment,来负责存储我们所需要的映射列表就可以了。接下来我们可以利用digest包的散列函数digest(),这个函数可以将任意的R对象映射为一个md5值,或者sha1等,他的md5值就是我们所需要的key,以下是使用例子:
有如下这样的数据
> df<-data.frame(x=1:4,y=2:5,z=3:6,k=4:7)
> df
x y z k
1 1 2 3 4
2 2 3 4 5
3 3 4 5 6
4 4 5 6 7
假设我想将x,y映射到z,将y,z映射为k,先定义两个函数,一个是SetKeyValue,负责设置key,value对,第二个是GetValue,输入一个key,返回key对应的value。
library(digest)
SetKeyValue<-function(envir,key,value){
envir[[digest(key)]]<-value
return(envir)
}
GetValue<-function(envir,key){
return(envir[[digest(key)]])
}
hash<-new.env()
for(i in 1:nrow(df)){
hash<-SetKeyValue(hash,df[i,1:2],df[i,3])
hash<-SetKeyValue(hash,df[i,2:3],df[i,4])
}
这样我们就得到了一个由environment构造的hash函数了,我们可以这样去得到值:
> GetValue(hash,df[1,1:2]) #得到当x=1 y=2时的z值
[1] 3
当然,如果想要更快的速度,可以使用fastdigest这个包,里面的散列函数比digest包要快,只需将digest()替换成fastdigest()就可以了。
3.如何用最快最简单的方法加快R的执行速度?
答案是使用compiler包,这个包的作用就是将R代码编译成字节码,这在很多情况下都能加快运行的速度,当然也会有一些时候作用没有那么大,使用非常简单,以下是一个使用例子:
> library(microbenchmark)
> library(compiler)
> f1<-function(){
+ x=1:100
+ for(i in 1:100){
+ x[i]=x[i]+1
+ }
+ }
> f2<-function(){
+ x=1:100
+ x+1
+ }
> f3<-cmpfun(f1)
> f4<-cmpfun(f2)
> microbenchmark(
+ f1(),
+ f2(),
+ f3(),
+ f4()
+ )
Unit: nanoseconds
expr min lq mean median uq max neval cld
f1() 170077 175453 178277.64 177652 179363 227746 100 c
f2() 978 1467 2028.94 1956 2444 5865 100 a
f3() 11730 12219 12873.79 12708 13196 20039 100 b
f4() 978 1466 1564.65 1467 1955 2933 100 a
可以看到编译后的f3,f4跟编译前的f1,f2,快了将近2倍到10倍,这么简单就能提升运行速度,何乐而不为呢?
我写的一个小代码,可以批量地把环境变量中所有的函数都编译一次:
funlist<-c(lsf.str())
for(f in funlist){
assign(f,cmpfun(get(f)))
}
如何想要更快,可以参考Windows使用OpenBLAS加速R语言计算速度
4.如何读取一个文件夹所有的文件?
我们可以利用list.files进行匹配,通过其中参数pattern可以填写正则表达式,用来匹配文件夹下满足条件的文件名。然后再利用lapply来导入文件。
filenames <- list.files("C:/Users/qj/Desktop/demo_data/", pattern = ".txt")
datalist <- lapply(filenames, function(name) {
read.table(paste0("C:/Users/qj/Desktop/demo_data/", name),sep=',',header = T)
})
5.如何把data.frame按照行来对应生成列表
> set.seed(1)
> df <- data.frame(i=3:1, y = runif(3))
> df
i y
1 3 0.2655087
2 2 0.3721239
3 1 0.5728534
我想把这个data.frame变成一个list 并且i要与list中的序号对应。
解决方法如下:
> i=df$i
> df=df[,2]
> dflist<-split(df,i)
> names(dflist)<-NULL
> dflist
[[1]]
[1] 0.5728534
[[2]]
[1] 0.3721239
[[3]]
[1] 0.2655087
6.如何标记每个组别中出现的次数,他们出现的顺序。
有这么个数据:
> df=data.frame(group=c(1,1,2,2,3,3,3))
> df
group
1 1
2 1
3 2
4 2
5 3
6 3
7 3
现在想添加一列,标记的id列,让它变成:
group id
1: 1 1
2: 1 2
3: 2 1
4: 2 2
5: 3 1
6: 3 2
7: 3 3
可以利用data.table实现:
> dt<-data.table(df)
> dt[,id:=1:.N,by=group]
> dt
group id
1: 1 1
2: 1 2
3: 2 1
4: 2 2
5: 3 1
6: 3 2
7: 3 3
7.R语言读取SPSS格式文件
可以使用library(memisc)这个包,虽然foreign也能做到,但是有的时候格式会很混乱,而memisc就可以完美读取。
8.R语言for循环的小贴士
看一个例子,这个例子是一个简单的for循环,它在大部分情况下是没有任何问题的。
n=nrow(x)
for(i in 1:n){
x[i]
}
但是如果当x是一个空值时,这就会出问题了,当x是空值时,我们并不希望这个for循环会执行,但是在这里n=0,那么i in 1:0 就会产生1和0,这就会导致出现各种各样的错误,而且这些错误并不固定,它会随着你的for循环里面的内容改变而改变,从而很难定位bug的所在。一个解决的方法是,我们可以使用seq.int(length.out = n)循环来代替1:n
n=nrow(x)
for(i in seq.int(length.out = n)){
x[i]
}
这样当n=0的时候,这个循环就不会执行了。
9.使用foreach包并行计算时看到里面print的方法
在linux的时候,我们可以在makeCluster上加上outfile="" 使用""就会默认输出到控制台,不过这个功能在windows好像不能用,在windows的时候建议输出到文件里,outfile="d:/log.txt",这样就可以了。
library(parallel)
library(foreach)
library(doParallel)
cl<-makeCluster(2,outfile="d:/log.txt") #work for windows
cl<-makeCluster(2,outfile="") #work for linux
registerDoParallel(cl)
x <- foreach(i=1:100,.combine = rbind,.inorder = F) %dopar% {
print(i)
sqrt(i)
}
stopCluster(cl)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23