京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据驱动银行业营销变革(2)_数据分析师
在这个过程当中,银行通过SAS工具搜集哪些数据?我们怎么判断这些数据是有用的,并且能高效地利用它们?
Karen Ganschow:银行业的一大优势,就是我们可以获取客户的交易数据,包括交易的流向、交易地点、交易的具体数额,且这些数据都是精准的,所以数据质量也很高。对银行来说,这是非常重要的客户数据来源。
与此同时,我们也更多地获取网银数据,通过网银可以观察到消费者在想什么,来进行营销探索,因此获得消费者体验的无缝连接。比方说,如果只是单纯地从交易数据进行推测、分析,可能这名消费者更愿意申请一张信用卡,但是通过整合的高级分析引擎得出的结论是,他可能对存款更感兴趣,进而银行会更有针对性地给这个客户进行推销。这就是我们所获得的改变。
“KnowMe”这个平台,我们其实更希望银行、客户、消费者之间建立长达一生的关系。基于这样的思想,我们重视每一次与客户的交互,也希望这样的数据更好地帮助客户,适时地向客户推荐正好需要的产品和服务,让客户获得很好的服务体验。
《中国经营报》:我相信,Westpac通过大数据挖掘一定获得了很好的收益。所以单纯从KnowMe平台来讲,哪些变化正在驱动着KnowMe项目?
Karen Ganschow:关于成功,我们有几个衡量的关键要素:客户满意度、客户对于银行的推崇情况以及最终我们在客户钱包当中所占的份额,这是我们所关注的三点。
过去两个月内所发布的数据显示,Westpac在客户满意度及客户推崇度方面,领先于澳大利亚其他的任何一家银行,目前排名第一。至于在客户钱包份额方面,我们与另外一家银行目前处于并列第一的状态。但是根据过去数据的轨迹显示,我们目前在采集客户数据、利用数据为消费者提供服务方面的能力不断提升。对于未来,我非常有信心。
通过数据驱动的营销方式,我们把掌握的信息和获得的洞察力逐渐转化成实际的利益。正如刚才我说的那样,我们非常看重的是客户的满意度,并且他是不是主动积极地跟他的亲朋好友推荐我们的银行,这其实是我们所测量的关键绩效指标--KPI。
所以,我们希望采用了数据驱动技术之后,给客户提供更加私人化的定制服务。作为银行,我们也希望能够赢得消费者他们更多的业务,除一些日常的银行业务外,还包括养老金存款、教育理财产品等。
但更加重要的是,银行要在正确的时间给客户提供私人定制服务,把一个恰当的产品推荐给他。而最关键的,我们希望以很大的规模来做这样的事情。一千万客户在中国不算什么,但是即便如此还是一个非常庞大的数据量,因为我们每个月要与客户进行7600万次的互动,所以SAS工具能够帮助我们把这些数据进行有效的整合、处理和分析。
可以说,KnowMe确实为我们增加了很多客户,也带来了很多收益,关键是要批量化地去做这个事情,因为就算能够实现给客户提供私人化定制服务,但如果只有一万人也没有太大的意义,所以说有一千万客户的时候如何把他进行大批量的复制,实现一对一的定制服务,这就牵扯到我之前提到的大量的数据交互。
我们有75%的客户已经拿到了他们最希望得到的产品推荐,这是我们值得称赞的成绩。在借用了SAS高性能分析工具以及整个我们所形成的数据分析生态系统之后,才能实现通过大批量的进行数据处理和分析来进行产品推荐。当我们首次给客户推荐一个意向产品的时候,虽然说也是在销售,但是因为非常契合他们自身实际,所以初次兑现接受率是50%。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03