京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据驱动银行业营销变革(2)_数据分析师
在这个过程当中,银行通过SAS工具搜集哪些数据?我们怎么判断这些数据是有用的,并且能高效地利用它们?
Karen Ganschow:银行业的一大优势,就是我们可以获取客户的交易数据,包括交易的流向、交易地点、交易的具体数额,且这些数据都是精准的,所以数据质量也很高。对银行来说,这是非常重要的客户数据来源。
与此同时,我们也更多地获取网银数据,通过网银可以观察到消费者在想什么,来进行营销探索,因此获得消费者体验的无缝连接。比方说,如果只是单纯地从交易数据进行推测、分析,可能这名消费者更愿意申请一张信用卡,但是通过整合的高级分析引擎得出的结论是,他可能对存款更感兴趣,进而银行会更有针对性地给这个客户进行推销。这就是我们所获得的改变。
“KnowMe”这个平台,我们其实更希望银行、客户、消费者之间建立长达一生的关系。基于这样的思想,我们重视每一次与客户的交互,也希望这样的数据更好地帮助客户,适时地向客户推荐正好需要的产品和服务,让客户获得很好的服务体验。
《中国经营报》:我相信,Westpac通过大数据挖掘一定获得了很好的收益。所以单纯从KnowMe平台来讲,哪些变化正在驱动着KnowMe项目?
Karen Ganschow:关于成功,我们有几个衡量的关键要素:客户满意度、客户对于银行的推崇情况以及最终我们在客户钱包当中所占的份额,这是我们所关注的三点。
过去两个月内所发布的数据显示,Westpac在客户满意度及客户推崇度方面,领先于澳大利亚其他的任何一家银行,目前排名第一。至于在客户钱包份额方面,我们与另外一家银行目前处于并列第一的状态。但是根据过去数据的轨迹显示,我们目前在采集客户数据、利用数据为消费者提供服务方面的能力不断提升。对于未来,我非常有信心。
通过数据驱动的营销方式,我们把掌握的信息和获得的洞察力逐渐转化成实际的利益。正如刚才我说的那样,我们非常看重的是客户的满意度,并且他是不是主动积极地跟他的亲朋好友推荐我们的银行,这其实是我们所测量的关键绩效指标--KPI。
所以,我们希望采用了数据驱动技术之后,给客户提供更加私人化的定制服务。作为银行,我们也希望能够赢得消费者他们更多的业务,除一些日常的银行业务外,还包括养老金存款、教育理财产品等。
但更加重要的是,银行要在正确的时间给客户提供私人定制服务,把一个恰当的产品推荐给他。而最关键的,我们希望以很大的规模来做这样的事情。一千万客户在中国不算什么,但是即便如此还是一个非常庞大的数据量,因为我们每个月要与客户进行7600万次的互动,所以SAS工具能够帮助我们把这些数据进行有效的整合、处理和分析。
可以说,KnowMe确实为我们增加了很多客户,也带来了很多收益,关键是要批量化地去做这个事情,因为就算能够实现给客户提供私人化定制服务,但如果只有一万人也没有太大的意义,所以说有一千万客户的时候如何把他进行大批量的复制,实现一对一的定制服务,这就牵扯到我之前提到的大量的数据交互。
我们有75%的客户已经拿到了他们最希望得到的产品推荐,这是我们值得称赞的成绩。在借用了SAS高性能分析工具以及整个我们所形成的数据分析生态系统之后,才能实现通过大批量的进行数据处理和分析来进行产品推荐。当我们首次给客户推荐一个意向产品的时候,虽然说也是在销售,但是因为非常契合他们自身实际,所以初次兑现接受率是50%。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31