
为什么你学完了68个Python函数,却依旧做不好数据分析?
数据分析老鸟都知道,相比于自己作出好的数据分析报告,“教别人如何入门数据分析”这事情简单多了。
什么for循环呀,def函数呀,print输出呀,自变量a赋值呀,字符串和数字的转换呀;什么相关分析呀,回归分析呀,方差分析呀,聚类分析呀,判别分析呀,决策树分析呀等等等等。
函数太多,方法太多,套路太多,技巧太多……
可现实是,大多数的人,听了无数道理依旧庸碌一生,学完68个Python常见函数却依旧做不好数据分析。
这很正常,因为我们依旧太年轻,数据分析并没有那么简单。
本文不属于具体的数据分析技巧,而是如何积累数据分析经验、提升自己逻辑思维能力的建议,希望你能尽情释放自己对数据分析的激情。
做一个数据分析精分人
好的数据分析师,会从市场需求的角度进行分析。所有的数据分析都是有市场目标的,而你要学会从数据的维度对目标做拆分,用数据落地目标。
作为一个月薪6000的数据分析师,如何为百万甚至千万的项目提供数据分析方向指导?
项目投入产出需要如何调整?推广费用如何分配?市场走向如何预测?
C君认为,关键点在于“学会用市场检验你所做的数据分析”
想做好数据分析,第一点就要明确目标,用数据的方式理解你正在做的业务,需要面临的问题。进而用数据拆分目标,对目标进行细分,确定数据处理问题的优先级。
注:本案例数据纯属举例,不具备参考价值
以2018年CDA课程销售业绩为例,假设2018年CDA课程销售的业绩为1000万,那么作为数据分析师,就要学会细分2018年的业绩指标,细分到一个季度250万的业绩指标,每个项目承担多少的销售指标,然后再继续拆分到每门课程(例如CDA等级班、CDA脱产就业班、CDA周末班、CDA大数据就业班、CDA区块链学院等),每门课程需要承担多少的销售指标。
分解完目标,就要去一步步落地,然后自己在整理数据过程中,逐步形成自己对数据的认知,从中获得点状的启发。而在收集数据和整理数据的过程中,最主要的是要形成认知,通过认知对比信息,或者通过建模和数据挖掘来论证所需变量和自己的业务之间的关系。
当你再执行2018年度的计划之前,首先要整合2017年甚至2016年的数据,从这两年的数据中提取信息,形成自己对2018年规划和推广的认知,并找到各个渠道推广成本和收益关系,找到自己对2018年规划中如何进一步优化项目的推广渠道和减少推广成本,决定CDA数据分析师2018年课程推广的重点方向指导。
基于之前的认知分析和建模论证等,你已经形成了自己数据分析的结论,还需要你根据具体的业务方向,项目具体情况,将结论抽象成和业务协定的建议。
通过2017年和2016年的收益与成本比,整理推论出的结果表明,CDA数据分析课程在推广的成本最高,收益能达到最优。
前面讲了全部都是理论层面的东西,最后呈现给老板的必然是数据分析报表。这时候展现出了数据分析师的表达能力,如何深入浅出的讲述自己的报表,是自己数据分析是否落地的核心。
此处C君借助别人家的报表进行简单分析给大家提供一个简单的模板,供大家参考。
首先,你需要根据活动目标确定你的目标达成率,完成百分比,提升百分比。
评定某次活动的成果,首先要注明目标情况,如:
CDA数据分析师公众号目标 10W+粉丝,1月粉丝1W,完成率90%,同比提升20%等
其次,你需要有充足的数据支撑,核心的数据走势图(一般适用于月报)
在这张图里,要对每个数据的拐点做分析,比如图中1月17日的数据之间增长有明显提升,你需要分析这个波动形成的原因,你需要找到并写在报告里。
再次,接下来进行粉丝分析,粉丝来源如何分布,不同渠道的流量转化率情况
粉丝量涨了,但是为什么粉丝会涨?要找到是哪个渠道带来的粉丝,为什么涨了?接触公众号的人都知道,公众号粉丝的来源分为公众号搜索、扫描二维码、图文页右上角菜单、图文页内公众号名称、名片分享、支付后关注、其他等几种来源方式,你要做的是将几个渠道进行分析,最好能制作出饼图,更好的展现出各个渠道粉丝占比。
注:图为CDA数据分析师一天粉丝数据,不具备实际参考性
由上图可以明线看到该天公众号的粉丝来源中公众号搜索与图文页内公众号名称为主要来源,两个的占比都接近35%,则意味着我们有必要修改渠道的投入比例,优化粉丝增长。
最后,改进及优化
根据上面简单的数据分析,大致了解了粉丝增长的一些规律和技巧,为以后的粉丝增长进行了经验的积累,不断的沉淀更新升级,走上数据分析的升级打怪之路。
切忌盲目迷信数据
最后,要明确一点,数据不是万能的。
第一点,在数据量不充足的情况下,数据只能作为参考,不能真正的适用于正常市场业务的判断,通常这点适用于初创公司;第二点,切忌深挖数据分析单一指标,而应权衡各个指标合理分析,否则耗时耗力,事半功倍得不偿失。
最后,祝你成为一个对数据了若指掌的互联网人。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16