
为什么你学完了68个Python函数,却依旧做不好数据分析?
数据分析老鸟都知道,相比于自己作出好的数据分析报告,“教别人如何入门数据分析”这事情简单多了。
什么for循环呀,def函数呀,print输出呀,自变量a赋值呀,字符串和数字的转换呀;什么相关分析呀,回归分析呀,方差分析呀,聚类分析呀,判别分析呀,决策树分析呀等等等等。
函数太多,方法太多,套路太多,技巧太多……
可现实是,大多数的人,听了无数道理依旧庸碌一生,学完68个Python常见函数却依旧做不好数据分析。
这很正常,因为我们依旧太年轻,数据分析并没有那么简单。
本文不属于具体的数据分析技巧,而是如何积累数据分析经验、提升自己逻辑思维能力的建议,希望你能尽情释放自己对数据分析的激情。
做一个数据分析精分人
好的数据分析师,会从市场需求的角度进行分析。所有的数据分析都是有市场目标的,而你要学会从数据的维度对目标做拆分,用数据落地目标。
作为一个月薪6000的数据分析师,如何为百万甚至千万的项目提供数据分析方向指导?
项目投入产出需要如何调整?推广费用如何分配?市场走向如何预测?
C君认为,关键点在于“学会用市场检验你所做的数据分析”
想做好数据分析,第一点就要明确目标,用数据的方式理解你正在做的业务,需要面临的问题。进而用数据拆分目标,对目标进行细分,确定数据处理问题的优先级。
注:本案例数据纯属举例,不具备参考价值
以2018年CDA课程销售业绩为例,假设2018年CDA课程销售的业绩为1000万,那么作为数据分析师,就要学会细分2018年的业绩指标,细分到一个季度250万的业绩指标,每个项目承担多少的销售指标,然后再继续拆分到每门课程(例如CDA等级班、CDA脱产就业班、CDA周末班、CDA大数据就业班、CDA区块链学院等),每门课程需要承担多少的销售指标。
分解完目标,就要去一步步落地,然后自己在整理数据过程中,逐步形成自己对数据的认知,从中获得点状的启发。而在收集数据和整理数据的过程中,最主要的是要形成认知,通过认知对比信息,或者通过建模和数据挖掘来论证所需变量和自己的业务之间的关系。
当你再执行2018年度的计划之前,首先要整合2017年甚至2016年的数据,从这两年的数据中提取信息,形成自己对2018年规划和推广的认知,并找到各个渠道推广成本和收益关系,找到自己对2018年规划中如何进一步优化项目的推广渠道和减少推广成本,决定CDA数据分析师2018年课程推广的重点方向指导。
基于之前的认知分析和建模论证等,你已经形成了自己数据分析的结论,还需要你根据具体的业务方向,项目具体情况,将结论抽象成和业务协定的建议。
通过2017年和2016年的收益与成本比,整理推论出的结果表明,CDA数据分析课程在推广的成本最高,收益能达到最优。
前面讲了全部都是理论层面的东西,最后呈现给老板的必然是数据分析报表。这时候展现出了数据分析师的表达能力,如何深入浅出的讲述自己的报表,是自己数据分析是否落地的核心。
此处C君借助别人家的报表进行简单分析给大家提供一个简单的模板,供大家参考。
首先,你需要根据活动目标确定你的目标达成率,完成百分比,提升百分比。
评定某次活动的成果,首先要注明目标情况,如:
CDA数据分析师公众号目标 10W+粉丝,1月粉丝1W,完成率90%,同比提升20%等
其次,你需要有充足的数据支撑,核心的数据走势图(一般适用于月报)
在这张图里,要对每个数据的拐点做分析,比如图中1月17日的数据之间增长有明显提升,你需要分析这个波动形成的原因,你需要找到并写在报告里。
再次,接下来进行粉丝分析,粉丝来源如何分布,不同渠道的流量转化率情况
粉丝量涨了,但是为什么粉丝会涨?要找到是哪个渠道带来的粉丝,为什么涨了?接触公众号的人都知道,公众号粉丝的来源分为公众号搜索、扫描二维码、图文页右上角菜单、图文页内公众号名称、名片分享、支付后关注、其他等几种来源方式,你要做的是将几个渠道进行分析,最好能制作出饼图,更好的展现出各个渠道粉丝占比。
注:图为CDA数据分析师一天粉丝数据,不具备实际参考性
由上图可以明线看到该天公众号的粉丝来源中公众号搜索与图文页内公众号名称为主要来源,两个的占比都接近35%,则意味着我们有必要修改渠道的投入比例,优化粉丝增长。
最后,改进及优化
根据上面简单的数据分析,大致了解了粉丝增长的一些规律和技巧,为以后的粉丝增长进行了经验的积累,不断的沉淀更新升级,走上数据分析的升级打怪之路。
切忌盲目迷信数据
最后,要明确一点,数据不是万能的。
第一点,在数据量不充足的情况下,数据只能作为参考,不能真正的适用于正常市场业务的判断,通常这点适用于初创公司;第二点,切忌深挖数据分析单一指标,而应权衡各个指标合理分析,否则耗时耗力,事半功倍得不偿失。
最后,祝你成为一个对数据了若指掌的互联网人。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16