
大数据驱动银行业营销变革(1)_数据分析师
作为数据密集型行业,如何挖掘和分析来自不同渠道的海量数据,驱动营销变革,被认为是未来银行业赢得市场和竞争的关键。
在过去两年多的时间里,澳大利亚西太平洋银行集团(Westpac)借助SAS的分析工具打造了名为“KnowMe”的数据驱动营销平台,重塑了与近千万普通消费者及中小企业(五千万美元以下)客户的关系。现在,这一项目带来的收益正在逐渐显现。
图为澳大利亚西太平洋银行集团客户关系管理与数字化部总经理Karen Ganschow
日前,由全球领先的商业分析软件与服务供应商SAS公司与《财经》杂志、《哈佛商业评论》中文版联合举办的“2014营销战略领袖峰会”在京举行。
峰会期间,就“大数据驱动银行业营销变革”话题,澳大利亚西太平洋银行集团(Westpac)客户关系管理与数字化部负责人、总经理Karen Ganschow接受了《中国经营报》记者专访。
Karen Ganschow告诉记者,Westpac每月会与客户进行7600万次来自网点、呼叫中心、网银、移动端、社交媒体等渠道的互动,SAS工具能够帮助银行把这些数据进行有效的整合、处理和分析,进而在正确的时候为客户提供正好需要的私人化的服务。
了解客户不断变化的需求,被Karen Ganschow认为是传统银行业应对非金融机构冲击的关键。对未来大数据在银行业的应用趋势,Karen Ganschow表示,移动端、社交媒体是非常重要的趋势。
打造“KnowMe”数据驱动营销平台
《中国经营报》:面对大数据的挑战,在过去几年时间里,Westpac如何挖掘和分析数据并做出决策,驱动业务和营销的创新?
Karen Ganschow:对于像我们这样的银行来说,这是一个新的挑战。一方面我们需要更了解客户,同时也要了解技术的发展趋势。
SAS是我们的战略分析伙伴,对于银行管理者来说,它能够帮助我们预测、分析,并且给予贴身的指导,让我知道未来是哪个方向,有哪些间接的趋势。
两年多前,借助SAS的分析工具,银行打造了名为“KnowMe”的数据驱动营销平台。所谓“KnowMe”,直接翻译就是“了解我”,这也是银行客户所希望的,他们希望能够让银行更多地了解客户的私人情况,提供私人定制化的服务。对于千万客户量的用户,通过Excel工作表进行相关统计、分析显然是不足够的,且我们是要将一对一的个人交互进行大规模处理,所以在这方面我们需要科技支持。
就如亚马逊向客户推荐一本书一样,我们关注的是,如何把它转化成为一个现实的营销机会,向银行客户推荐产品,并且大规模化地在做这个事情。
《中国经营报》: “KnowMe”与一般的银行营销平台有何不同?
Karen Ganschow:简而言之,这是一个数据驱动的、通过多种渠道为客户提供体验的平台。
首先,通过这个平台,银行内部各个部门可以获取感兴趣的数据。同时,我们建立了中心决策机制,与此前以产品为核心的营销模式不同,现在我们围绕客户为中心做出决策。第三,平台将一线、前端业务整合在一起,比如,支行每个店面与客户的沟通、呼叫中心接到的客户电话、联络中心主动与客户的沟通等,这都是我们获取数据的渠道。同时,我们也借助社交媒体有针对性地、定向地向客户推送信息。
当初我们决定上“KnowMe”这个项目的时候,对于合作伙伴的选择也是经过认真考虑和挑选的。实际上,SAS在技术方面与其他我们备选的合作伙伴是很接近的。但SAS最终脱颖而出在于人的因素。SAS除了能够提供非常优质或者说精益求精的技术外,整个SAS团队在合作、沟通交流方面也是非常强的,并帮助银行取得了很大收益和成效。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29