
我们在采用机器学习算法对数据进行分析时,首先要对数据进行了解,而了解数据最快速的方式就是可视化。但是作者可视化采用的方法对很多data都通用,且采用的是各种图形的图矩阵,如直方图、散点图矩阵等等。本文就根据作者的分析来介绍如何运用pandas作各种矩阵图。
(1)数据
数据为PimaIndians dataset,在作者的代码中包含该数据来源网址,即皮马印第安人糖尿病数据集,样本个数有768个,包含变量有:
Preg:怀孕次数
Plas:口服葡萄糖耐量试验中血浆葡萄糖浓度为2小时
Pres:舒张压(mm Hg)
Skin:三头肌皮褶厚度(mm)
test :2小时血清胰岛素(μU/ml)
mass:体重指数(kg /(身高(m))^ 2)
pedi:糖尿病血统功能
age:年龄(岁)
class:类变量(0或1),估计是性别。
(2)Histograms(直方图矩阵)
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] #设置变量名 data = pandas.read_csv(url, names=names) #采用pandas读取csv数据 data.hist() plt.show()
但是,我们看到图形并不协调,存在变量与坐标重叠的情况,我们可以调整hist()的参数来解决,包括对x轴、y轴标签大小的调节((xlabelsize,ylabelsize),整个图形布局大小的调节figsize:
data.hist(xlabelsize=7,ylabelsize=7,figsize=(8,6)) # plt.show()
可以看到每一个变量的分布情况,其中mass、plas、pres呈现一定的正态分布,其他除了class之外,基本上左偏。
(3)Density Plots(密度图矩阵)
原始代码输出后仍然存在重叠的地方,在这里加入了对图中坐标文字fontsize,以及整体布局大小figsize。
(4)箱线图矩阵(Box and Whisker Plots)
与(3)类似,在这里注意可以共享x轴和y轴,用了sharex=False, sharey=False的命令。
(5)相关系数矩阵图(Correlation Matrix Plot)
import numpy correlations = data.corr() #计算变量之间的相关系数矩阵 # plot correlation matrix fig = plt.figure() #调用figure创建一个绘图对象 ax = fig.add_subplot(111) cax = ax.matshow(correlations, vmin=-1, vmax=1) #绘制热力图,从-1到1 fig.colorbar(cax) #将matshow生成热力图设置为颜色渐变条 ticks = numpy.arange(0,9,1) #生成0-9,步长为1 ax.set_xticks(ticks) #生成刻度 ax.set_yticks(ticks) ax.set_xticklabels(names) #生成x轴标签 ax.set_yticklabels(names) plt.show()
颜色越深表明二者相关性越强。
(6)散布图矩阵(Scatterplot Matrix)
from pandas.tools.plotting import scatter_matrix scatter_matrix(data,figsize=(10,10)) plt.show()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10