京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS统计分析案例:Wilcoxon符号秩检验
最近我发现,大家对T检验的使用频率很高,但是有一个共同的应该引起注意的问题,几乎没有人去讨论原始数据的正态分布情况,只要是两样本差异检验,就直接使用T检验出结果。
严格来说,这是不严谨的。为什么呢?因为T检验对数据正态分布有一定的要求和假设,当数据明显不是正态分布的时候,要考虑使用非参数检验过程。
从这个角度,也能说明非参数检验的实用性更强,使用范围更为广泛。
今天就送上一个非参数配对检验:Wilcoxon符号秩检验,与之遥相呼应的恰好是大家比较喜欢的配对T检验。
某减肥班15名学员,记录了减肥前的体重,参加1个月的减肥特训后,再次称重,现在我们要考察一下一个月的减肥训练是否有效。
这个话题真的是很贴近生活吧,接下来让我们满怀期待开始SPSS非参数Wilcoxon符号秩检验吧。
数据个案只有15个,样本少的时候,真的很难看清是不是正态分布,所以使用非参数检验就显得很可贵了,我们可以不用去关注分布的问题。
在【分析】菜单中找到【非参数检验】→【相关样本】,打开对话框,【目标】选项卡选择【定制分析】,【字段】选项卡设置如下:
【设置】选项卡里面的参数比较重要,首先要在【定制检验】的检验方法中选择【威尔科克森匹配对符号秩检验】,如下:
其他参数可以不用设置。最后点击下方的【运行】按钮,软件开始执行。
来看结果吧。
原假设减肥训练前后的体重无差异,这样的事情概率是0.034(表中的显著性值),与显著性水平0.05相比呢,0.034足够小,是小概率事件,也就是说,减肥训练前后体重没有差异的概率是0.034,概率太小了,拒绝原假设。说明减肥训练前后体重发生了变化,有显著差异,有统计学意义。
我们双击上面这个统计图表,或者鼠标右键选择【编辑内容】→【在单独窗口中】,此时软件自动打开【模型查看器】,我们能看到此次分析更为细致的统计结果,结论当然是不变的。所以我们只看前面的检验表就是可以的。
为了辅助看清楚减肥训练前后的体重变化方向,我们还需要自己动手制作一个多线图,结果如下:
显然大部分的学员在减肥特训之后,体重的确是有所下滑的,减肥班报的有效果,当然也有个别的学员并没有如愿。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23