京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS统计分析案例:Wilcoxon符号秩检验
最近我发现,大家对T检验的使用频率很高,但是有一个共同的应该引起注意的问题,几乎没有人去讨论原始数据的正态分布情况,只要是两样本差异检验,就直接使用T检验出结果。
严格来说,这是不严谨的。为什么呢?因为T检验对数据正态分布有一定的要求和假设,当数据明显不是正态分布的时候,要考虑使用非参数检验过程。
从这个角度,也能说明非参数检验的实用性更强,使用范围更为广泛。
今天就送上一个非参数配对检验:Wilcoxon符号秩检验,与之遥相呼应的恰好是大家比较喜欢的配对T检验。
某减肥班15名学员,记录了减肥前的体重,参加1个月的减肥特训后,再次称重,现在我们要考察一下一个月的减肥训练是否有效。
这个话题真的是很贴近生活吧,接下来让我们满怀期待开始SPSS非参数Wilcoxon符号秩检验吧。
数据个案只有15个,样本少的时候,真的很难看清是不是正态分布,所以使用非参数检验就显得很可贵了,我们可以不用去关注分布的问题。
在【分析】菜单中找到【非参数检验】→【相关样本】,打开对话框,【目标】选项卡选择【定制分析】,【字段】选项卡设置如下:
【设置】选项卡里面的参数比较重要,首先要在【定制检验】的检验方法中选择【威尔科克森匹配对符号秩检验】,如下:
其他参数可以不用设置。最后点击下方的【运行】按钮,软件开始执行。
来看结果吧。
原假设减肥训练前后的体重无差异,这样的事情概率是0.034(表中的显著性值),与显著性水平0.05相比呢,0.034足够小,是小概率事件,也就是说,减肥训练前后体重没有差异的概率是0.034,概率太小了,拒绝原假设。说明减肥训练前后体重发生了变化,有显著差异,有统计学意义。
我们双击上面这个统计图表,或者鼠标右键选择【编辑内容】→【在单独窗口中】,此时软件自动打开【模型查看器】,我们能看到此次分析更为细致的统计结果,结论当然是不变的。所以我们只看前面的检验表就是可以的。
为了辅助看清楚减肥训练前后的体重变化方向,我们还需要自己动手制作一个多线图,结果如下:
显然大部分的学员在减肥特训之后,体重的确是有所下滑的,减肥班报的有效果,当然也有个别的学员并没有如愿。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04