
使用Python操作MySQL的一些基本方法
前奏
为了能操作数据库, 首先我们要有一个数据库, 所以要首先安装Mysql, 然后创建一个测试数据库python_test用以后面的测试使用
CREATE DATABASE `python_test` CHARSET UTF8
导入数据库模块
import MySQLdb
连接数据库
con = MySQLdb.connect(host="localhost", user="root", passwd="******",db="python_test",port=3306)
在这里, 我们虽然拿到了python的数据库连接, 但是不能在这个对象上直接对数据库进行操作, 还需要获取对应的操作游标才能进行数据库的操作,所以还需要进行下面的操作
cur = con.cursor()
创建表格
cur.execute('create table stu_info (name char(128) not null default "", age tinyint(3) not null default 0, sex enum("man","femal") not null default "man") engine=innodb charset=utf8')
#0L
cur.execute 返回执行的sql 影响的行数, 因为这里是创建数据库, 所以是0L行
但到这里还并没有真正执行了sql语句, 必须使用MySQLdb.commit才是真正执行完毕
con.commit()
到这里, 我们的表格才算真正创建完成
同理, 往表中写数据, 也是一样的操作流程 execute ==> commit
不过, 写入数据的execute 稍有不同, 如下
更新表数据
往表中写入数据时, 执行execute 方法, 有两种方式, 一种是直接execute(sql), 然后commit 完成, sql里是写入的sql 语句
cur.execute("insert into stu_info (name, age, sex) values ('Yi_Zhi_Yu',25,'man')")
con.commit()
这会直接写入表中,但还有另外一种方式,
execute 可以接受两个参数, 第一个参数是sql语句, 不过这个sql中的values的内容使用占位符%s表示,第二个参数是实际的写入的values列表, 如下:
cur.execute("insert into stu_info (name, age, sex) values (%s,%s,%s)", ("Tony",25, "man"))
con.commit()
这种方式与第一中方式相比, 更清晰一些, 安全性也更好, 能有效防止sql注入
另外, cursor还有一个executemany, 参数和execute一样, 不过第二个参数可以传递多列表值, 达到多次执行某个语句的效果
cur.executemany("insert into stu_info (name, age, sex) values (%s,%s,%s)",(("LiMei",26,"femal"),("YuanYuan",28,"femal")))
con.commit()
这里实际上就是执行了两次插入操作
数据查询
直接看例子
cur.execute("select * from stu_info")
stus = cur.fetchall()
#stus 已经是查询的结果结合了, 格式如下:
(('Yi_Zhi_Yu', 25, 'man'),
('Tony', 25, 'man'),
('LiMei', 26, 'femal'),
('YuanYuan', 28, 'femal'))
tuple形式, 我们可以通过循环输出
for stu in stus:
print "name: %s; age: %d; sex: %s" %(stu[0], stu[1], stu[2])
输出:
name: Yi_Zhi_Yu; age: 25; sex: man
name: Tony; age: 25; sex: man
name: LiMei; age: 26; sex: femal
name: YuanYuan; age: 28; sex: femal
那上面的查询虽然得到了每行的数据, 但结果集中并没有字段名, 如果要返回字段名, 如下操作:
cur = con.cursor(cursorclass=MySQLdb.cursors.DictCursor)
cur.execute("select * from stu_info")
cur.fetchall()
返回的结果集:
({'age': 25, 'name': 'Yi_Zhi_Yu', 'sex': 'man'},
{'age': 25, 'name': 'Tony', 'sex': 'man'},
{'age': 26, 'name': 'LiMei', 'sex': 'femal'},
{'age': 28, 'name': 'YuanYuan', 'sex': 'femal'})
每个元素都是一个dict, 以key-value的形式展示了每个字段和对应的值
总结
Python 中对数据的操作, 增删改均要在指针对象执行了sql语句后, 使用连接对象commit, 查询的结果使用指针对象的fetch系列方法获取
PS: 以上皆为学习笔记, 难免有错, 欢迎指正
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01