
商业智能时代已经全面到来,分析型人才的岗位数量在就业市场中呈现井喷式的增长。无论从事产品研发的工程师,还是从事产品推广的市场人员、人力资源的财务会计人员,都需要掌握数据分析技术,否则很有可能被人工智能时代替代。
“工欲善其事,必先利其器”。当前,R和Python等开源软件方兴未艾,但是这类软件学习曲线缓慢,使很多初学者的热情在进入数据分析的核心领域之前就消失殆尽。而商业数据分析的真正目的是为了解决业务分析需求,构建稳健的数据挖掘模型。因此能否以案例的形式带领我们快读进入数据分析和编程领域领域的资源显得尤为珍贵。
CDA数据分析研究院2017年出版了首本R数据挖掘教材,为了告诉你R语言和数据分析有多火,用数据说话,我爬取了京东商城《用商业案例学R语言数据挖掘》书评,来告诉你…..
从京东的1400+评论从看到,好评1400+,中评10+,差评8。好评率98%。
以下是从京东商城爬取到的部分数据,共有674条记录,存入到excel文件下,。
首先,使用Rwordseg进行中文分词
我们知道,中文自然语言处理领域最基础的技术是分词。基础是因为,众所周知,英文是以词为单位的,词和词之间是靠空格隔开,而中文是以字为单位,句子中所有的字连起来才能描述一个意思。对于中文的语言处理,首先要把词语进行切分,才能进行更深层次的语言处理。
中文分词比较有名的包非Rwordseg和jieba莫属,他们采用的算法大同小异,这里用Rwordseg来做简单演示。
1. 设置工作目录并读取数据
2. 加载所需包,这里使用Rwordseg包进行中文分词
比如我们使用Rwordseg包对第一行进行分词
3. 导入搜狗词库(机器原始分词总有不如意的地方,因此需要添加词、词库来做参照)
4. 对所有评论信息进行进行分词并计算各个词汇出现的频次,按照词频排序
看一下前十名的有效评论:
5. 构造词汇和词频的数据框
然后,我们使用Wordcloud2进行词云展示
Wordcloud2被誉为是可能是目前最好的词云解决方案,调用一个 JS 的库 (wordcloud2.js) 实现 wordcloud。有效的利用词与词的间隔来插入数据,更可以根据图片或者文字来绘制定制化的词云。如果你没有安装过,可以执行install.packages('wordcloud2')进行简单的安装。
1. 加载包
2. 绘制词云图
效果如下:
如果你想换个图形,比如想画个星星,那么
还可以根据图片或者文字制作定制化词云,比如画个小猴子:
关于词云图,大小代表词汇出现的频率,所以我们可以看出,通过关键词不错、好、专业、易懂、推荐、必备、清晰等词可以看出本书的评价还是不错的,是一本值得学习的书籍。另外的一类词京东、速度、快、正版、包装等多是评论京东物流和图书质量。
后续:本篇文章只是作为一个趣味性的了解,里面的技术细节也没有深究,比如去停用词、文本分类等。实际上文本数据作为非结构化数据而言,可以经过处理后变成结构化数据,通过数据挖掘模型发掘更有趣的知识发现。
最后打波小广告,如果你对R语言数据分析感兴趣,欢迎参加CDA-R语言专题课程,学习数据分析技能,成为优秀的R语言数据分析专家。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15